Sentiment Analysis on Tweets Using Machine Learning and Combinatorial Fusion

被引:5
|
作者
Ondusko, Dominik [1 ]
Ho, James [1 ]
Roy, Brandon [1 ]
Hsu, D. Frank [1 ]
机构
[1] Fordham Univ, Dept Comp & Informat Sci, Lab Informat & Data Min, New York, NY 10023 USA
关键词
Cognitive Diversity; Combinatorial Fusion; Machine Learning; rank score characteristic (RSC) function; sentiment analysis;
D O I
10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00191
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentiment analysis using social network platforms such as twitter has achieved tremendous results. However, due to its imbalanced data content and semantic context, it remains a challenge to give a full and effective sentiment labeling. In this paper, we propose a two-stage data analytic approach consisting of machine learning algorithms and combinatorial fusion. The first stage uses five machine learning algorithms: logistic regression, naive Bayes, perceptron, random forest, and support vector machine (SVM). Combinatorial fusion is then used to combine subset of these five algorithms. We conduct our investigation using a Kaggle dataset to classify each of the tweets as positive, neutral, or negative sentiment. We demonstrate that although most of the machine learning algorithms perform well, combination of these algorithms with higher performance ratio and cognitive diversity can perform even better.
引用
收藏
页码:1066 / 1071
页数:6
相关论文
共 50 条
  • [1] Sentiment Analysis of Tweets using Machine Learning Approach
    Rathi, Megha
    Malik, Aditya
    Varshney, Daksh
    Sharma, Rachita
    Mendiratta, Sarthak
    [J]. 2018 ELEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2018, : 365 - 367
  • [2] Sentiment analysis of malayalam tweets using machine learning techniques
    Soumya, S.
    Pramod, K., V
    [J]. ICT EXPRESS, 2020, 6 (04): : 300 - 305
  • [3] Sentiment Analysis of Tweets Using Various Machine Learning Techniques
    Tariyal, Ankit
    Goyal, Sachin
    Tantububay, Neeraj
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATION AND TELECOMMUNICATION (ICACAT), 2018,
  • [4] Evaluating sentiment analysis for Arabic Tweets using machine learning and deep learning
    Alshutayri, Areej
    Alamoudi, Huda
    Alshehri, Boushra
    Aldhahri, Eman
    Alsaleh, Iqbal
    Aljojo, Nahla
    Alghoson, Abdullah
    [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (04): : 7 - 18
  • [5] Sentiment Analysis of Sindhi Tweets Dataset using Supervised Machine Learning Techniques
    Hammad, Muhammad
    Anwar, Haris
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 108 - 113
  • [6] Comparison Study of Sentiment Analysis of Tweets using Various Machine Learning Algorithms
    Kanakaraddi, Suvama G.
    Chikaraddi, Ashok K.
    Gull, Karuna C.
    Hiremath, P. S.
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 287 - 292
  • [7] Sentiment Analysis of Tweets Using Deep Learning
    Ranganathan, Jaishree
    Tsahai, Tsega
    [J]. ADVANCED DATA MINING AND APPLICATIONS (ADMA 2022), PT I, 2022, 13725 : 106 - 117
  • [8] Sentiment analysis of tweets through Altmetrics: A machine learning approach
    Hassan, Saeed-Ul
    Saleem, Aneela
    Soroya, Saira Hanif
    Safder, Iqra
    Iqbal, Sehrish
    Jamil, Saqib
    Bukhari, Faisal
    Aljohani, Naif Radi
    Nawaz, Raheel
    [J]. JOURNAL OF INFORMATION SCIENCE, 2021, 47 (06) : 712 - 726
  • [9] A Review on Lexicon-Based and Machine Learning Political Sentiment Analysis Using Tweets
    Britzolakis, Alexandros
    Kondylakis, Haridimos
    Papadakis, Nikolaos
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2020, 14 (04) : 517 - 563
  • [10] Sentiment analysis using various machine learning algorithms for disaster related tweets classification
    Sudha, S. Baby
    Dhanalakshmi, S.
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2023, 11 (04) : 390 - 417