SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK

被引:71
|
作者
Cui, Xiaona [1 ]
Yao, Lu [1 ]
Yang, Xiaoying [1 ]
Gao, Yong [1 ]
Fang, Fude [1 ]
Zhang, Jun [2 ]
Wang, Qinghua [3 ]
Chang, Yongsheng [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Basic Med Sci, Natl Lab Med Mol Biol, 5 Dong Dan San Tiao, Beijing 100005, Peoples R China
[2] Shihezi Univ, Sch Med, Shihezi, Xinjiang, Peoples R China
[3] Fudan Univ, Huashan Hosp, Shanghai Med Coll, Dept Endocrinol & Metab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
sirtuin-6; glucose homeostasis; insulin sensitivity; exercise capacity; diabetes; 5'-adenosine monophosphate-activated protein kinase; GLUCOSE-HOMEOSTASIS; ENERGY-EXPENDITURE; PROTEIN-KINASE; DEACETYLASE; PHOSPHORYLATION; TRANSCRIPTION; STRESS; ROLES; ALPHA;
D O I
10.1152/ajpendo.00122.2017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Because of the mass and functions in metabolism, skeletal muscle is one of the major organs regulating whole body metabolic homeostasis. SIRT6, a histone deacetylase, has been shown to regulate metabolism in liver and brain; however, its specific role in skeletal muscle is undetermined. In the present study we explored physiological function of SIRT6 in muscle. We generated a muscle-specific SIRT6 knockout mouse model. The mice with SIRT6 deficiency in muscle displayed impaired glucose homeostasis and insulin sensitivity, attenuated whole body energy expenditure, and weakened exercise performance. Mechanistically, deletion of SIRT6 in muscle decreased expression of genes involved in glucose and lipid uptake, fatty acid oxidation, and mitochondrial oxidative phosphorylation in muscle cells because of the reduced AMP-activated protein kinase (AMPK) activity. In contrast, overexpression of SIRT6 in C2C12 myotubes activates AMPK. Our results from both gain- and loss-of-function experiments identify SIRT6 as a physiological regulator of muscle mitochondrial function. These findings indicate that SIRT6 is a potential therapeutic target for treatment of type 2 diabetes mellitus.
引用
收藏
页码:E493 / E505
页数:13
相关论文
共 50 条
  • [1] Endogenous SIRT6 in platelets negatively regulates platelet activation and thrombosis
    Liu, Yanli
    Wang, Tao
    Zhou, Qilong
    Xin, Guang
    Niu, Hai
    Li, Fan
    Wang, Yilan
    Li, Shiyi
    Dong, Yuman
    Zhang, Kun
    Feng, Lijuan
    Fu, Wei
    Zhang, Boli
    Huang, Wen
    [J]. FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [2] Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes
    Collins, John A.
    Kapustina, Maryna
    Bolduc, Jesalyn A.
    Pike, James F. W.
    Diekman, Brian O.
    Mix, Kimberlee
    Chubinskaya, Susan
    Eroglu, Emrah
    Michel, Thomas
    Poole, Leslie B.
    Furdui, Cristina M.
    Loeser, Richard F.
    [J]. FREE RADICAL BIOLOGY AND MEDICINE, 2021, 166 : 90 - 103
  • [3] Sirt6 Suppresses High Glucose-Induced Mitochondrial Dysfunction and Apoptosis in Podocytes through AMPK Activation
    Fan, Yanqin
    Yang, Qian
    Yang, Yingjie
    Gao, Zhao
    Ma, Yiqiong
    Zhang, Lu
    Liang, Wei
    Ding, Guohua
    [J]. INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2019, 15 (03): : 701 - 713
  • [4] PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6
    Affandi, Trisiani
    Haas, Ami
    Ohm, Angela M.
    Wright, Gregory M.
    Black, Joshua C.
    Reyland, Mary E.
    [J]. MOLECULAR CANCER RESEARCH, 2024, 22 (02) : 181 - 196
  • [5] AKT2 regulates development and metabolic homeostasis via AMPK-depedent pathway in skeletal muscle
    Chen, Miao
    Ji, Caoyu
    Yang, Qingchen
    Gao, Shuya
    Peng, Yue
    Li, Zhe
    Gao, Xingyu
    Li, Yaoting
    Jiang, Nan
    Zhang, Yubin
    Bian, Xiaohong
    Chen, Caiping
    Zhang, Kaidi
    Sanchis, Daniel
    Yan, Fangrong
    Ye, Junmei
    [J]. CLINICAL SCIENCE, 2020, 134 (17): : 2381 - 2398
  • [6] The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α
    Zhong, Lei
    D'Urso, Agustina
    Toiber, Debra
    Sebastian, Carlos
    Henry, Ryan E.
    Vadysirisack, Douangsone D.
    Guimaraes, Alexander
    Marinelli, Brett
    Wikstrom, Jakob D.
    Nir, Tomer
    Clish, Clary B.
    Vaitheesvaran, Bhavapriya
    Iliopoulos, Othon
    Kurland, Irwin
    Dor, Yuval
    Weissleder, Ralph
    Shirihai, Orian S.
    Ellisen, Leif W.
    Espinosa, Joaquin M.
    Mostoslavsky, Raul
    [J]. CELL, 2010, 140 (02) : 280 - 293
  • [7] Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation
    Jing, Enxuan
    O'Neill, Brian T.
    Rardin, Matthew J.
    Kleinridders, Andre
    Ilkeyeva, Olga R.
    Ussar, Siegfried
    Bain, James R.
    Lee, Kevin Y.
    Verdin, Eric M.
    Newgard, Christopher B.
    Gibson, Bradford W.
    Kahn, C. Ronald
    [J]. DIABETES, 2013, 62 (10) : 3404 - 3417
  • [8] Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6
    Anderson, Jason G.
    Ramadori, Giorgio
    Ioris, Rafael M.
    Galie, Mirco
    Berglund, Eric D.
    Coate, Katie C.
    Fujikawa, Teppei
    Pucciarelli, Stefania
    Moreschini, Benedetta
    Amici, Augusto
    Andreani, Cristina
    Coppari, Roberto
    [J]. MOLECULAR METABOLISM, 2015, 4 (11): : 846 - 856
  • [9] Sirt6 regulates lifespan in Drosophila melanogaster
    Taylor, Jackson R.
    Wood, Jason G.
    Mizerak, Evan
    Hinthorn, Samuel
    Liu, Julianna
    Finn, Matthew
    Gordon, Sarah
    Zingas, Louis
    Chang, Chengyi
    Klein, Mark A.
    Denu, John M.
    Gorbunova, Vera
    Seluanov, Andrei
    Boeke, Jef D.
    Sedivy, John M.
    Helfand, Stephen L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (05)
  • [10] Chrysophanol Alleviates Metabolic Syndrome by Activating the SIRT6/AMPK Signaling Pathway in Brown Adipocytes
    Liu, Xueying
    Yang, Zehong
    Li, Huixuan
    Luo, Wen
    Duan, Wentao
    Zhang, Junmei
    Zhu, Zhangzhi
    Liu, Min
    Li, Saimei
    Xin, Xiaoyi
    Wu, Haoxiang
    Xian, Shaoxiang
    Liu, Meijing
    Liu, Changhui
    Shen, Chuangpeng
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2020, 2020