A finite-size magnetic monopole in double-potential formalism

被引:1
|
作者
Lebedev, O
机构
[1] Department of Physics, Institute for Particle Physics and Astrophysics, Virginia Polytechnic Institute and State University, Blacksburg
关键词
D O I
10.1142/S0217732397002259
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the double-potential formalism developed by Zwanziger, it is possible to construct nonsingular four-potentials corresponding to a given distribution of magnetic charge without violating the Bianchi identity. In this letter, we study a ball-like monopole with uniform distribution of magnetic charge. The corresponding four-potentials are found explicitly. We also construct the angular momentum operator of an electron in the field of such a monopole, which can be used to investigate the problem of electron-monopole scattering and to rectify Kazama-Yang-Goldhaber singularity.
引用
收藏
页码:2203 / 2211
页数:9
相关论文
共 50 条
  • [2] FINITE-SIZE EFFECTS IN ULTRATHIN MAGNETIC LAYERS
    GUMMICH, U
    CABRERA, GG
    DASILVA, CETG
    JOURNAL DE PHYSIQUE, 1988, 49 (C-8): : 1701 - 1702
  • [3] MAGNETIC INTERFACE STATES AND FINITE-SIZE EFFECTS
    BROOKES, NB
    CHANG, Y
    JOHNSON, PD
    PHYSICAL REVIEW LETTERS, 1991, 67 (03) : 354 - 357
  • [4] Finite-size scaling on random magnetic structures
    Reis, FDAA
    PHYSICAL REVIEW B, 1997, 55 (17): : 11084 - 11087
  • [5] Finite-size scaling on random magnetic structures
    Reis, FDAA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 257 (1-4) : 495 - 500
  • [6] Magnetic catalysis of a finite-size pion condensate
    Ayala, Alejandro
    Mercado, Pedro
    Villavicencio, C.
    PHYSICAL REVIEW C, 2017, 95 (01)
  • [7] Finite-size effects in layered magnetic systems
    Karevski, D
    Henkel, M
    PHYSICAL REVIEW B, 1997, 55 (10): : 6429 - 6439
  • [8] FINITE-SIZE CORRECTIONS TO THE CHEMICAL-POTENTIAL
    SIEPMANN, JI
    MCDONALD, IR
    FRENKEL, D
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (03) : 679 - 691
  • [9] Magnetic properties of finite systems:: Microcanonical finite-size scaling
    Promberger, M
    Kastner, M
    Hüller, A
    COMPUTER SIMULATION STUDIES IN CONDENSED-MATTER PHYSICS XII, 2000, 85 : 185 - 190
  • [10] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265