Localization and delocalization in one-dimensional systems with translation-invariant hopping

被引:1
|
作者
Sepehrinia, Reza [1 ,2 ]
机构
[1] Univ Tehran, Dept Phys, Tehran 14395547, Iran
[2] IPM, Inst Res Fundamental Sci, Sch Phys, Tehran 193955531, Iran
关键词
QUANTUM DIFFUSION; ABSENCE; MODEL;
D O I
10.1103/PhysRevB.103.L020201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a theory of Anderson localization on a one-dimensional lattice with translation-invariant hopping. We find by analytical calculation the localization length for arbitrary finite-range hopping in the single propagating channel regime. Then by examining the convergence of the localization length, in the limit of infinite hopping range, we revisit the problem of localization criteria in this model and investigate the conditions under which it can be violated. Our results reveal possibilities of having delocalized states by tuning the long-range hopping.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Scenario for delocalization in translation-invariant systems
    De Roeck, Wojciech
    Huveneers, Francois
    [J]. PHYSICAL REVIEW B, 2014, 90 (16)
  • [2] Contextuality in infinite one-dimensional translation-invariant local Hamiltonians
    Kaiyan Yang
    Xiao Zeng
    Yujing Luo
    Guowu Yang
    Lan Shu
    Miguel Navascués
    Zizhu Wang
    [J]. npj Quantum Information, 8
  • [3] Contextuality in infinite one-dimensional translation-invariant local Hamiltonians
    Yang, Kaiyan
    Zeng, Xiao
    Luo, Yujing
    Yang, Guowu
    Shu, Lan
    Navascues, Miguel
    Wang, Zizhu
    [J]. NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [4] Localization and delocalization in one-dimensional dynamic systems
    Dickey, J
    Maidanik, G
    [J]. 1996 IEEE ULTRASONICS SYMPOSIUM, PROCEEDINGS, VOLS 1 AND 2, 1996, : 507 - 514
  • [5] LOCALIZATION AND DELOCALIZATION IN PERIODIC ONE-DIMENSIONAL DYNAMIC-SYSTEMS
    MAIDANIK, G
    DICKEY, J
    [J]. ACUSTICA, 1991, 73 (03): : 119 - 128
  • [6] ASYMPTOTICALLY ADDITIVE INTEGRALS OF MOTION OF ONE-DIMENSIONAL PARTICLES WITH AN UNPAIRED TRANSLATION-INVARIANT INTERACTION
    GUREVICH, BM
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (06) : 153 - 154
  • [7] LOCALIZATION AND DELOCALIZATION IN ONE-DIMENSIONAL TOMONAGA MODEL
    CHUI, ST
    [J]. PHYSICAL REVIEW B, 1977, 16 (02): : 617 - 623
  • [8] LOCALIZATION-DELOCALIZATION TRANSITION BY INTERACTIONS IN ONE-DIMENSIONAL FERMION SYSTEMS
    SUZUMURA, Y
    FUKUYAMA, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (08) : 2870 - 2874
  • [9] Quasi-Many-Body Localization in Translation-Invariant Systems
    Yao, N. Y.
    Laumann, C. R.
    Cirac, J. I.
    Lukin, M. D.
    Moore, J. E.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (24)
  • [10] TRANSFORMATIONS OF ONE-DIMENSIONAL CELLULAR-AUTOMATON RULES BY TRANSLATION-INVARIANT LOCAL SUBJECTIVE MAPPINGS
    BOCCARA, N
    [J]. PHYSICA D, 1993, 68 (3-4): : 416 - 426