Consistent finite-dimensional approximation of phase-field models of fracture

被引:6
|
作者
Almi, Stefano [1 ]
Belz, Sandro [1 ]
机构
[1] TUM, Fak Math, Boltzmannstr 2, D-85748 Garching, Germany
基金
奥地利科学基金会;
关键词
Ambrosio-Tortorelli functional; Phase-field damage; Quasi-static evolution; Critical points; Numerical consistency; ELEMENT APPROXIMATION; NUMERICAL IMPLEMENTATION; VARIATIONAL FORMULATION; BRITTLE-FRACTURE; MUMFORD; CONVERGENCE; EVOLUTION; GROWTH;
D O I
10.1007/s10231-018-0815-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the finite-dimensional approximation of quasi-static evolutions of critical points of the phase-field model of brittle fracture. In a space discretized setting, we first discuss an alternating minimization scheme which, together with the usual time-discretization procedure, allows us to construct such finite-dimensional evolutions. Then, passing to the limit as the space discretization becomes finer and finer, we prove that any limit of a sequence of finite-dimensional evolutions is itself a quasi-static evolution of the phase-field model of fracture. Our proof shows for the first time the consistency of a numerical scheme for evolutions of fractures along critical points.
引用
收藏
页码:1191 / 1225
页数:35
相关论文
共 50 条
  • [1] Consistent finite-dimensional approximation of phase-field models of fracture
    Stefano Almi
    Sandro Belz
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1191 - 1225
  • [2] Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture
    Hesch, C.
    Weinberg, K.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (12) : 906 - 924
  • [3] Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations
    Miehe, C.
    Welschinger, F.
    Hofacker, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (10) : 1273 - 1311
  • [4] Thermodynamically consistent phase-field models of solidification processes
    Charach, C
    Fife, PC
    MOVING BOUNDARIES IV: COMPUTATIONAL MODELLING OF FREE AND MOVING BOUNDARY PROBLEMS, 1997, : 27 - 36
  • [5] ON MODAL ANALYSIS OF PHASE-FIELD FRACTURE MODELS
    Jukic, Kresimir
    Jarak, Tomislav
    Tonkovic, Zdenko
    Lorenzana, Antolin
    6TH INTERNATIONAL CONFERENCE ON MECHANICAL MODELS IN STRUCTURAL ENGINEERING, CMMOST 2021, 2 EDITION, 2022, : 301 - 320
  • [6] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [7] Phase-field models for ductile fatigue fracture
    Kalina, Martha
    Schneider, Tom
    Waisman, Haim
    Kaestner, Markus
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2025, 136
  • [8] Isogeometric collocation for phase-field fracture models
    Schillinger, Dominik
    Borden, Michael J.
    Stolarski, Henryk K.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 : 583 - 610
  • [9] THERMODYNAMICALLY-CONSISTENT PHASE-FIELD MODELS FOR SOLIDIFICATION
    WANG, SL
    SEKERKA, RF
    WHEELER, AA
    MURRAY, BT
    CORIELL, SR
    BRAUN, RJ
    MCFADDEN, GB
    PHYSICA D-NONLINEAR PHENOMENA, 1993, 69 (1-2) : 189 - 200
  • [10] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821