COMPUTING THE l-POWER TORSION OF AN ELLIPTIC CURVE OVER A FINITE FIELD

被引:10
|
作者
Miret, J. [1 ]
Moreno, R. [1 ]
Rio, A. [2 ]
Valls, M. [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 2, ES-08034 Barcelona, Spain
关键词
D O I
10.1090/S0025-5718-08-02201-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algorithm we develop outputs the order and the structure, including generators, of the l-Sylow subgroup of the group of rational points of an elliptic curve defined over a finite field. To do this, we do not assume any knowledge of the group order. We are able to choose points in such a way that a linear number of successive l-divisions leads to generators of the subgroup under consideration. After the computation of a couple of polynomials, each division step relies on finding rational roots of polynomials of degree l. We specify in complete detail the case l = 3, when the complexity of each trisection is given by the computation of cubic roots in finite fields.
引用
收藏
页码:1767 / 1786
页数:20
相关论文
共 50 条