Identifying semantic roles using maximum entropy models

被引:0
|
作者
Moreda, P [1 ]
Fernández, M [1 ]
Palomar, M [1 ]
Suárez, A [1 ]
机构
[1] Univ Alicante, Dept Lenguajes & Sistemas Informat, Grp Invest Proc Lenguaje & Sistemas Informac, E-03080 Alicante, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a supervised learning method of semantic role labeling is presented. It is based on maximum entropy conditional probability models. This method acquires the linguistic knowledge from an annotated corpus and this knowledge is represented in the form of features. Several types of features have been analyzed for a few words selected from sections of the Wall Street Journal part of the Penn Treebank corpus.
引用
收藏
页码:163 / 170
页数:8
相关论文
共 50 条
  • [1] Semantic annotation of multimedia using maximum entropy models
    Argillander, J
    Iyengar, G
    Nock, H
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 153 - 156
  • [2] Resolution of the Semantic Ambiguity of Words using the Maximum Entropy Probability Models
    Suarez Cueto, Armando
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2005, (34):
  • [3] Semantic role labeling using maximum entropy
    Lan, KC
    Ho, KS
    Luk, RWP
    Leong, HV
    [J]. COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS, 2004, 3314 : 954 - 961
  • [4] Semantic Chunk Annotation for questions using Maximum Entropy
    Fan, Shixi
    Zhang, Yaoyun
    Ng, Wing W. Y.
    Wang, Xuan
    Wang, Xiaolong
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 450 - 454
  • [5] Identifying semantic roles using combinatory categorial grammar
    Gildea, D
    Hockenmaier, J
    [J]. PROCEEDINGS OF THE 2003 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2003, : 57 - 64
  • [6] A maximum entropy approach for integrating semantic information in statistical language models
    Chueh, CH
    Chien, JT
    Wang, HM
    [J]. 2004 International Symposium on Chinese Spoken Language Processing, Proceedings, 2004, : 309 - 312
  • [7] Latent semantic information in maximum entropy language models for conversational speech recognition
    Deng, YG
    Khudanpur, S
    [J]. HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, 2003, : 56 - 63
  • [8] Semantic Role Labeling for Biomedical Corpus Using Maximum Entropy Classifier
    Han, Lei
    Ji, Dong-hong
    Ren, Han
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 662 - 668
  • [9] Semantic roles modeling using statistical language models
    Ondas, S.
    Hladek, D.
    Stas, J.
    Juhar, J.
    Kovacs, L.
    Baksane, E. Varga
    [J]. 2015 13TH INTERNATIONAL CONFERENCE ON EMERGING ELEARNING TECHNOLOGIES AND APPLICATIONS (ICETA), 2015, : 283 - 288
  • [10] Identifying the Probability Distribution of Fatigue Life Using the Maximum Entropy Principle
    Li, Hongshuang
    Wen, Debing
    Lu, Zizi
    Wang, Yu
    Deng, Feng
    [J]. ENTROPY, 2016, 18 (04):