Simulation of Fracture Coalescence in Granite via the Combined Finite-Discrete Element Method

被引:58
|
作者
Euser, Bryan [1 ]
Rougier, E. [1 ]
Lei, Z. [1 ]
Knight, E. E. [1 ]
Frash, L. P. [2 ]
Carey, J. W. [2 ]
Viswanathan, H. [3 ]
Munjiza, A. [4 ]
机构
[1] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87544 USA
[2] Los Alamos Natl Lab, Earth Syst Observat Grp, Los Alamos, NM USA
[3] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM USA
[4] Univ Split, Fac Civil Engn Architecture & Geodesy FGAG, Split, Croatia
关键词
Crack interaction; Propagation; FDEM; Normal and tangential crack propagation; CRACK COALESCENCE; ROCK; PROPAGATION; INITIATION; MODEL; COMPRESSION;
D O I
10.1007/s00603-019-01773-0
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Fracture coalescence is a critical phenomenon for creating large, inter-connected fractures from smaller cracks, affecting fracture network flow and seismic energy release potential. In this paper, simulations are performed to model fracture coalescence processes in granite specimens with pre-existing flaws. These simulations utilize an in-house implementation of the combined finite-discrete element method (FDEM) known as the hybrid optimization software suite (HOSS). The pre-existing flaws within the specimens follow two geometric patterns: (1) a single-flaw oriented at different angles with respect to the loading direction, and (2) two flaws, where the primary flaw is oriented perpendicular to the loading direction and the secondary flaw is oriented at different angles. The simulations provide insight into the evolution of tensile and shear fracture behavior as a function of time. The single-flaw simulations accurately reproduce experimentally measured peak stresses as a function of flaw inclination angle. Both the single- and double-flaw simulations exhibit a linear increase in strength with increasing flaw angle while the double-flaw specimens are systematically weaker than the single-flaw specimens.
引用
收藏
页码:3213 / 3227
页数:15
相关论文
共 50 条
  • [1] Simulation of Fracture Coalescence in Granite via the Combined Finite–Discrete Element Method
    Bryan Euser
    E. Rougier
    Z. Lei
    E. E. Knight
    L. P. Frash
    J. W. Carey
    H. Viswanathan
    A. Munjiza
    [J]. Rock Mechanics and Rock Engineering, 2019, 52 : 3213 - 3227
  • [2] Numerical analysis of flyer plate experiments in granite via the combined finite-discrete element method
    Chau, Viet
    Rougier, Esteban
    Lei, Zhou
    Knight, Earl E.
    Gao, Ke
    Hunter, Abigail
    Srinivasan, Gowri
    Viswanathan, Hari
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 1005 - 1016
  • [3] Simulation of mixed-mode fracture using the combined finite-discrete element method
    Boyce, S.
    Lei, Z.
    Euser, B.
    Knight, E. E.
    Rougier, E.
    Stormont, J. C.
    Taha, M. M. Reda
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2020, 7 (05) : 1047 - 1055
  • [4] Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
    Yan, Chengzeng
    Zheng, Hong
    Sun, Guanhua
    Ge, Xiurun
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2016, 49 (04) : 1389 - 1410
  • [5] Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
    Chengzeng Yan
    Hong Zheng
    Guanhua Sun
    Xiurun Ge
    [J]. Rock Mechanics and Rock Engineering, 2016, 49 : 1389 - 1410
  • [6] Rock Slide Simulation with the Combined Finite-Discrete Element Method
    Barla, Marco
    Piovano, Giovanna
    Grasselli, Giovanni
    [J]. INTERNATIONAL JOURNAL OF GEOMECHANICS, 2012, 12 (06) : 711 - 721
  • [7] Detonation gas model for combined finite-discrete element simulation of fracture and fragmentation
    Munjiza, A
    Latham, JP
    Andrews, KRF
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 49 (12) : 1495 - 1520
  • [8] Fracture and fragmentation of thin shells using the combined finite-discrete element method
    Munjiza, A.
    Lei, Z.
    Divic, V.
    Peros, B.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 95 (06) : 478 - 498
  • [9] Sensitivity analysis of fracture energies for the combined finite-discrete element method (FDEM)
    Deng, Penghai
    Liu, Quansheng
    Huang, Xing
    Bo, Yin
    Liu, Qi
    Li, Weiwei
    [J]. ENGINEERING FRACTURE MECHANICS, 2021, 251
  • [10] Impact Fracture and Fragmentation of Glass via the 3D Combined Finite-Discrete Element Method
    Lei, Zhou
    Rougier, Esteban
    Knight, Earl E.
    Zang, Mengyan
    Munjiza, Antonio
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (06):