Delivery technologies for genome editing

被引:410
|
作者
Yin, Hao [1 ]
Kauffman, Kevin J. [1 ,2 ]
Anderson, Daniel G. [1 ,2 ,3 ,4 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Harvard Massachusetts Inst Technol, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[4] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
关键词
ZINC-FINGER NUCLEASES; HEMATOPOIETIC STEM-CELLS; HEMOPHILIA GENE-THERAPY; DOUBLE-STRAND BREAKS; OFF-TARGET CLEAVAGE; HUMAN T-CELLS; IN-VIVO; MESSENGER-RNA; REPLACEMENT THERAPY; MUSCULAR-DYSTROPHY;
D O I
10.1038/nrd.2016.280
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the recent development of CRISPR technology, it is becoming increasingly easy to engineer the genome. Genome-editing systems based on CRISPR, as well as transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs), are becoming valuable tools for biomedical research, drug discovery and development, and even gene therapy. However, for each of these systems to effectively enter cells of interest and perform their function, efficient and safe delivery technologies are needed. This Review discusses the principles of biomacromolecule delivery and gene editing, examines recent advances and challenges in non-viral and viral delivery methods, and highlights the status of related clinical trials.
引用
收藏
页码:387 / 399
页数:13
相关论文
共 50 条
  • [1] Delivery technologies for genome editing
    Hao Yin
    Kevin J. Kauffman
    Daniel G. Anderson
    Nature Reviews Drug Discovery, 2017, 16 : 387 - 399
  • [2] Exploring Advanced CRISPR Delivery Technologies for Therapeutic Genome Editing
    Rostami, Neda
    Gomari, Mohammad Mahmoudi
    Choupani, Edris
    Abkhiz, Shadi
    Fadaie, Mahmood
    Eslami, Seyed Sadegh
    Mahmoudi, Zahra
    Zhang, Yapei
    Puri, Madhu
    Monfared, Fatemeh Nafe
    Demireva, Elena
    Uversky, Vladimir N.
    Smith, Bryan Ronain
    Bencherif, Sidi A.
    SMALL SCIENCE, 2024, 4 (10):
  • [3] Genome editing technologies
    Bhat, S. R.
    CURRENT SCIENCE, 2017, 112 (07): : 1315 - 1316
  • [4] Unlocking Genome Editing: Advances and Obstacles in CRISPR/Cas Delivery Technologies
    Kaupbayeva, Bibifatima
    Tsoy, Andrey
    Safarova , Yuliya
    Nurmagambetova, Ainetta
    Murata, Hironobu
    Matyjaszewski, Krzysztof
    Askarova, Sholpan
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2024, 15 (11)
  • [5] Comparing genome editing technologies
    1600, Mary Ann Liebert Inc. (34):
  • [6] The commercialization of genome-editing technologies
    Brinegar, Katelyn
    Yetisen, Ali K.
    Choi, Sun
    Vallillo, Emily
    Ruiz-Esparza, Guillermo U.
    Prabhakar, Anand M.
    Khademhosseini, Ali
    Yun, Seok-Hyun
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2017, 37 (07) : 924 - 932
  • [7] Genome editing technologies for plant physiology
    Ezure, Hiroshi
    Miura, Kenji
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 131 : 1 - 1
  • [8] An overview of recent genome editing technologies
    Mashimo, Tomoji
    CANCER SCIENCE, 2018, 109 : 1199 - 1199
  • [9] Therapeutic Genome Editing and In Vivo Delivery
    Amanda Catalina Ramirez-Phillips
    Dexi Liu
    The AAPS Journal, 23
  • [10] Genome editing reagent delivery in plants
    Ghogare, Rishikesh
    Ludwig, Yvonne
    Bueno, Gela Myan
    Slamet-Loedin, Inez H.
    Dhingra, Amit
    TRANSGENIC RESEARCH, 2021, 30 (04) : 321 - 335