On the stagnation point flow of a special class of non-Newtonian fluids

被引:5
|
作者
Sacheti, NC
Chandran, P
Jaju, RP
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Math & Stat, Muscat, Oman
[2] Sultan Qaboos Univ, Coll Sci, Dept Comp Sci, Muscat, Oman
关键词
non-Newtonian fluid; two-dimensional flow; stagnation point; boundary layer; skin friction;
D O I
10.1080/00319100008045300
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The two-dimensional boundary layer equations for a class of non-Newtonian fluids, for which the apparent viscosity can be expressed as a polynomial in the second scalar invariant of the rate of strain tensor, have been derived. These equations have been employed to analyse the flow near a stagnation point over a stationary impermeable wall. The non-Newtonian effects on the boundary layer velocity profile and the wall skin friction have been studied, and compared with the corresponding Newtonian fluid. The fluid velocity in the boundary layer has been shown to be retarded by the non-Newtonian effect while the skin friction increases proportionate to it.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 50 条
  • [1] STAGNATION POINT FLOW OF A NON-NEWTONIAN FLUID
    GARG, VK
    RAJAGOPAL, KR
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 1990, 17 (06) : 415 - 421
  • [2] STAGNATION POINT FLOWS OF NON-NEWTONIAN POWER LAW FLUIDS
    KONERU, SR
    MANOHAR, R
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (01): : 84 - &
  • [3] FLOW OF A PARTICULAR CLASS OF NON-NEWTONIAN VISCO-ELASTIC AND VISCO-INELASTIC FLUIDS NEAR A STAGNATION POINT
    RAJESWARI, GK
    RATHNA, SL
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1962, 13 (01): : 43 - &
  • [4] UNSTEADY STAGNATION POINT HEAT-TRANSFER IN NON-NEWTONIAN FLUIDS
    GORLA, RSR
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1980, 58 (04): : 431 - 437
  • [5] Wavelet analysis of stagnation point flow of non-Newtonian nanofluid
    M.HAMID
    M.USMAN
    R.U.HAQ
    Z.H.KHAN
    Wei WANG
    [J]. Applied Mathematics and Mechanics(English Edition), 2019, 40 (08) : 1211 - 1226
  • [6] Wavelet analysis of stagnation point flow of non-Newtonian nanofluid
    M. Hamid
    M. Usman
    R. U. Haq
    Z. H. Khan
    Wei Wang
    [J]. Applied Mathematics and Mechanics, 2019, 40 : 1211 - 1226
  • [7] Wavelet analysis of stagnation point flow of non-Newtonian nanofluid
    Hamid, M.
    Usman, M.
    Haq, R. U.
    Khan, Z. H.
    Wang, Wei
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (08) : 1211 - 1226
  • [8] Heat transfer and flow of a non-Newtonian fluid at a stagnation point
    Maneschy, CE
    Massoudi, M
    Ramezan, M
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1997, 21 (03): : 279 - 285
  • [9] CLASS OF NON-NEWTONIAN FLUIDS
    CIORANESCU, D
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1977, 3 (2-3): : 263 - 282
  • [10] Flow of non-Newtonian fluids
    Avram, Marius Andrei
    Avram, Marioara
    Iliescu, Ciprian
    Bragaru, Adina
    [J]. 2006 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, 2007, : 463 - +