On Data-driven Attack-resilient Gaussian Process Regression for Dynamic Systems

被引:0
|
作者
Kim, Hunmin [1 ]
Guo, Pinyao [2 ,3 ]
Zhu, Minghui [4 ]
Liu, Peng [3 ]
机构
[1] Univ Illinois, Mech Sci & Engn, 1206 West Green St, Urbana, IL 61801 USA
[2] Airbnb Inc, 888 Brannan St, San Francisco, CA 94103 USA
[3] Penn State Univ, Coll Informat Sci & Technol, 201 Old Main, University Pk, PA 16802 USA
[4] Penn State Univ, Sch Elect Engn, 201 Old Main, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
FAULT-DETECTION;
D O I
10.23919/acc45564.2020.9147328
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies attack-resilient Gaussian process regression of partially unknown nonlinear dynamic systems subject to sensor attacks and actuator attacks. The problem is formulated as the joint estimation of states, attack vectors, and system functions of partially unknown systems. We propose a new learning algorithm by incorporating our recently developed unknown input and state estimation technique into the Gaussian process regression algorithm. Stability of the proposed algorithm is formally studied. We also show that average case learning errors of system function approximation are diminishing if the number of state estimates whose estimation errors are non-zero is bounded by a constant. We demonstrate the performance of the proposed algorithm by numerical simulations on the IEEE 68-bus test system.
引用
收藏
页码:2981 / 2986
页数:6
相关论文
共 50 条
  • [1] Design and Implementation of Attack-Resilient Cyberphysical Systems WITH A FOCUS ON ATTACk-RESILIENT STATE ESTIMATORS
    Pajic, Miroslav
    Weimer, James
    Bezzo, Nicola
    Sokolsky, Oleg
    Pappas, George J.
    Lee, Insup
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2017, 37 (02): : 66 - 81
  • [2] Towards Attack-Resilient Geometric Data Perturbation
    Chen, Keke
    Sun, Gordon
    Liu, Ling
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 78 - +
  • [3] Robust Data Driven Analysis for Electricity Theft Attack-Resilient Power Grid
    Khan, Inam Ullah
    Javaid, Nadeem
    Taylor, C. James
    Ma, Xiandong
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (01) : 537 - 548
  • [4] Dynamic Attack-Resilient Routing in Software Defined Networks
    Mohan, Purnima Murali
    Gurusamy, Mohan
    Lim, Teng Joon
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2018, 15 (03): : 1146 - 1160
  • [5] Linking Gaussian process regression with data-driven manifold embeddings for nonlinear data fusion
    Lee, Seungjoon
    Dietrich, Felix
    Karniadakis, George E.
    Kevrekidis, Ioannis G.
    [J]. INTERFACE FOCUS, 2019, 9 (03)
  • [6] Path Generating Inverse Gaussian Process Regression for Data-Driven Ultimate Boundedness Control of Nonlinear Systems
    Jang, Yeongjun
    Chang, Hamin
    Park, Heein
    Shim, Hyungbo
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 748 - 753
  • [7] Reduced-space Gaussian Process Regression for data-driven probabilistic forecast of chaotic dynamical systems
    Wan, Zhong Yi
    Sapsis, Themistoklis P.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2017, 345 : 40 - 55
  • [8] Model Reference Gaussian Process Regression: Data-Driven Output Feedback Controller
    Kim, Hyuntae
    Chang, Hamin
    Shim, Hyungbo
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 955 - 960
  • [9] Model Reference Gaussian Process Regression: Data-Driven State Feedback Controller
    Kim, Hyuntae
    Chang, Hamin
    [J]. IEEE ACCESS, 2023, 11 : 134374 - 134381
  • [10] Data-driven stochastic AC-OPF using Gaussian process regression
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Budennyy, Semen
    Maximov, Yury
    Deka, Deepjyoti
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152