Joint Probabilistic Data Association Filter Using Adaptive Gibbs Sampling

被引:0
|
作者
He, Shaoming [1 ,2 ]
Shin, Hyo-Sang [2 ]
Tsourdos, Antonios [2 ]
机构
[1] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China
[2] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, Beds, England
关键词
ALGORITHM;
D O I
10.1109/icuas48674.2020.9213988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel adaptive Gibbs sampling algorithm to implement joint probabilistic data association filter for multiple targets tracking. Instead of uniformly visiting and sampling each single element in one joint association hypothesis, the proposed algorithm selects an optimal element visiting sequence that tends to keep the most probable single association hypothesis. Compared to the random Gibbs sampling, it has been demonstrated that the proposed adaptive Gibbs sampling provides faster convergence speed, thus improving the tracking accuracy when the number of samples is limited, and improved robustness against the variation of the number of burnin samples. Extensive empirical simulations are undertaken to validate the performance of the proposed approach.
引用
收藏
页码:991 / 997
页数:7
相关论文
共 50 条
  • [1] Hybrid fuzzy probabilistic data association filter and joint probabilistic data association filter
    Oussalah, M
    De Schutter, J
    [J]. INFORMATION SCIENCES, 2002, 142 (1-4) : 195 - 226
  • [2] Distributed multiple model joint probabilistic data association with Gibbs sampling-aided implementation
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    [J]. INFORMATION FUSION, 2020, 64 : 20 - 31
  • [3] Improved adaptive joint probabilistic data association filter for multiple targets angles tracking
    Keche, M.
    Woolfson, M.S.
    Harrison, I.
    Ouamri, A.
    Ahmeda, S.S.
    [J]. Electronics Letters, 1999, 33 (16): : 1361 - 1362
  • [4] Improved adaptive joint probabilistic data association filter for multiple targets angles tracking
    Keche, M
    Woolfson, MS
    Harrison, I
    Ouamri, A
    Ahmeda, SS
    [J]. ELECTRONICS LETTERS, 1997, 33 (16) : 1361 - 1362
  • [5] Tracking Multiple Interacting Targets Using a Joint Probabilistic Data Association Filter
    Tchango, Arsene Fansi
    Thomas, Vincent
    Buffet, Olivier
    Dutech, Alain
    Flacher, Fabien
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [6] Trajectory Optimization for Multitarget Tracking Using Joint Probabilistic Data Association Filter
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2020, 43 (01) : 170 - 178
  • [7] A Multiple-Detection Joint Probabilistic Data Association Filter
    Habtemariam, B.
    Tharmarasa, R.
    Thayaparan, T.
    Mallick, M.
    Kirubarajan, T.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (03) : 461 - 471
  • [8] Information-Theoretic Joint Probabilistic Data Association Filter
    He, Shaoming
    Shin, Hyo-Sang
    Tsourdos, Antonios
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (03) : 1262 - 1269
  • [9] Adaptive Blocked Gibbs Sampling for Inference in Probabilistic Graphical Models
    Islam, Mohammad Maminur
    Al Farabi, Mohammad Khan
    Venugopal, Deepak
    [J]. 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 262 - 269
  • [10] Joint data association using importance sampling
    Morelande, Mark R.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 292 - 299