Bifurcation analysis and hybrid control of a discrete-time predator-prey model

被引:10
|
作者
Fei, Lizhi [1 ]
Chen, Xingwu [1 ]
Han, Bensan [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Econ Math, Chengdu, Sichuan, Peoples R China
关键词
Hybrid control; Neimark-Sacker bifurcation; predator-prey model; transcritical bifurcation;
D O I
10.1080/10236198.2021.1876038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a discrete-time predator-prey model with six parameters is investigated. After splitting the parameter space with respect to the number of fixed points, we obtain both transcritical bifurcation surfaces and a Neimark-Sacker bifurcation surface in the six-dimensional parameter space by the normal form method. Then we apply a hybrid control strategy to control the Neimark-Sacker bifurcation so that the positive fixed point of the controlled system is locally asymptotically stable. Numerical simulations are performed to illustrate our theoretical results.
引用
收藏
页码:102 / 117
页数:16
相关论文
共 50 条
  • [1] Stability and bifurcation in a discrete-time predator-prey model
    Murakami, Kouichi
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2007, 13 (10) : 911 - 925
  • [2] Discrete-time predator-prey model with flip bifurcation and chaos control
    Khan, A. Q.
    Ahmad, I.
    Alayachi, H. S.
    Noorani, M. S. M.
    Khaliq, A.
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) : 5944 - 5960
  • [3] Bifurcation, chaos analysis and control in a discrete-time predator-prey system
    Liu, Weiyi
    Cai, Donghan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [4] Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system
    Yuan, Li-Guo
    Yang, Qi-Gui
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (08) : 2345 - 2362
  • [5] Bifurcation analysis of a three species discrete-time predator-prey model
    Khan, A. Q.
    Qureshi, S. M.
    Alotaibi, A. M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (10) : 7853 - 7875
  • [6] On the analysis of stability, bifurcation, and chaos control of discrete-time predator-prey model with Allee effect on predator
    Isik, Seval
    Kangalgil, Figen
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 404 - 420
  • [7] Bifurcation analysis of a two-dimensional discrete-time predator-prey model
    Hamada, M. Y.
    El-Azab, Tamer
    El-Metwally, Hamdy
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 4815 - 4833
  • [8] Bifurcation and chaos in discrete-time predator-prey system
    Jing, ZJ
    Yang, JP
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 259 - 277
  • [9] Bifurcations and hybrid control in a 3×3 discrete-time predator-prey model
    Khan A.Q.
    Kiyani A.Z.
    Ahmad I.
    [J]. Mathematical Biosciences and Engineering, 2020, 17 (06): : 6963 - 6992
  • [10] BIFURCATION AND CHAOS ANALYSIS OF A TWO-DIMENSIONAL DISCRETE-TIME PREDATOR-PREY MODEL
    El-Azab, Tamer
    Hamada, M. Y.
    El-Metwally, H.
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 1910 - 1930