Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)

被引:0
|
作者
Charrier, Reynaldo [1 ,2 ]
Iturrizaga, Lasafam [3 ]
Carretier, Sebastien [4 ]
Regard, Vincent [4 ]
机构
[1] Univ Andres Bello, Escuela Ciencias Tierra, Republ 239, Santiago, Chile
[2] Univ Chile, Dept Geol, Plaza Ercilla 803, Santiago, Chile
[3] Univ Gottingen, Inst Geog, Goldschmidtstr 5, D-37077 Gottingen, Germany
[4] Univ Toulouse, Geosci Environm Toulouse, CNES, CNRS,IRD,UPS, 14 Ave Edouard Belin, Toulouse, France
来源
ANDEAN GEOLOGY | 2019年 / 46卷 / 02期
关键词
Post-Miocene landscape evolution; Be-10 exposure ages; LGM; Younger Dryas; Cachapoal drainage basin; Principal Cordillera; Central Andes; Chile; EXTENSIONAL BASIN; QUATERNARY GLACIATION; TECTONIC INVERSION; PRODUCTION-RATES; MENDOZA ANDES; VALLEY; BE-10; CHRONOLOGY; MORAINES; RECORDS;
D O I
10.5027/andgeoV46n2-3108
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
We present here a reconstruction of the post late Miocene landscape evolution of the western slope of the Andean Cordillera Principal near 34 degrees 20' S. We base our analysis on the available geological information, a morphological characterization of the landform assemblages in the Cachapoal and southern Maipo catchments, and the first Be-10 exposure ages for moraines in this area. The Cachapoal drainage basin is characterized by a variety of morphological features, like an elevated low-relief surface, volcanoes and lava flows on valley slopes, U-shaped valley sections, roches moutonnees, and large glaciated areas. Different kinds of deposits have been included in the study, such as moraines, lacustrine and landslide deposits, and a well-developed system of fluvial terraces in the more distal part of the Cachapoal catchment. Landslides are mostly developed on rocks of the late Eocene-early Miocene Abanico Formation. and are less frequent in outcrops of the overlying, early to middle Miocene Farellones Formation. We estimate that the lowest end moraine in the Cachapoal catchment is located next to the locality Bocatoma Chacayes (similar to 950 m altitude), though covered by a major landslide. No evidence exist for glacial deposits further down stream in this region. Lateral moraine ridges of the Cachapoal Glacier at Los Cerrillos yielded Be-10 exposure ages of 20.3 +/- 2.9 and 21.9 +/- 5.3 ka that indicate they are associated with the Last Glacial Maximum (LGM). Holocene moraines exist next to all glacier tongues. Of particular interest in this region is the 12 km-long debris-covered Cachapoal Glacier, the longest valley glacier in the central Chilean Andes, and its distal and proximal moraine deposits. Two lateral moraines adjacent to the present-day Cachapoal Glacier yielded exposure average ages of 13.5 +/- 2.4 ka for the external ridge, indicating the Younger Dryas, and 3.8 +/- 0.8 ka for the internal ridge, an age that coincides with the 4.2 ka global climatic event that marks the beginning of the Meghalayan Age, at the end of the Holocene. The large size of this moraine on both sides of the ice tongue indicates the great development of the glacier at that time. Some of these ages coincide with ages obtained further north in the Maipo drainage basin, at the latitude of Santiago, and in the eastern flank of the cordillera, however, no pre-LGM deposits were found here, unlike the other mentioned regions. This difference together with the much lower altitude of the LGM moraine deposits in the study region suggests that the Cachapoal catchment is a transition zone to a more humid region further south, and indicates the great need for further reconnaissance and dating of glacial deposits in this Andean region. Our analysis of the geomorphological evolution is consistent with incision start for the Cachapoal Valley in latest Miocene. In this process, glacier incision was apparently not much effective until mid-Pleistocene time, when volcanism was active in the higher regions of the mountain range covering areas not yet incised, whereas in the western Principal Cordillera lavas flowed in deeply incised valleys. Pleistocene glaciers deepened and shaped the already incised valleys, which are presently mostly occupied by rivers.
引用
收藏
页码:240 / 278
页数:39
相关论文
共 10 条