De-novo drug design with deep reinforcement learning

被引:0
|
作者
Popova, Mariya [3 ]
Isayev, Olexandr [2 ]
Tropsha, Alexander [1 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, UNC Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, Carrboro, NC USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
71
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Molecular de-novo design through deep reinforcement learning
    Olivecrona, Marcus
    Blaschke, Thomas
    Engkvist, Ola
    Chen, Hongming
    [J]. JOURNAL OF CHEMINFORMATICS, 2017, 9
  • [2] Molecular de-novo design through deep reinforcement learning
    Marcus Olivecrona
    Thomas Blaschke
    Ola Engkvist
    Hongming Chen
    [J]. Journal of Cheminformatics, 9
  • [3] Deep reinforcement learning for de novo drug design
    Popova, Mariya
    Isayev, Olexandr
    Tropsha, Alexander
    [J]. SCIENCE ADVANCES, 2018, 4 (07):
  • [4] Deep Reinforcement Learning for Multiparameter Optimization in de novo Drug Design
    Stahl, Niclas
    Falkman, Goran
    Karlsson, Alexander
    Mathiason, Gunnar
    Bostrom, Jonas
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (07) : 3166 - 3176
  • [5] Utilizing reinforcement learning for de novo drug design
    Gummesson Svensson, Hampus
    Tyrchan, Christian
    Engkvist, Ola
    Haghir Chehreghani, Morteza
    [J]. MACHINE LEARNING, 2024, 113 (07) : 4811 - 4843
  • [6] Conditional reduction of the loss value versus reinforcement learning for biassing a de-novo drug design generator
    Mohamed-Amine Chadi
    Hajar Mousannif
    Ahmed Aamouche
    [J]. Journal of Cheminformatics, 14
  • [7] Conditional reduction of the loss value versus reinforcement learning for biassing a de-novo drug design generator
    Chadi, Mohamed-Amine
    Mousannif, Hajar
    Aamouche, Ahmed
    [J]. JOURNAL OF CHEMINFORMATICS, 2022, 14 (01)
  • [8] NOVEL METHODS FOR DE-NOVO DRUG DESIGN
    MURCKO, MA
    ROTSTEIN, SH
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 207 : 39 - COMP
  • [9] Universal Approach to De Novo Drug Design for Target Proteins Using Deep Reinforcement Learning
    Zhang, Yunjiang
    Li, Shuyuan
    Xing, Miaojuan
    Yuan, Qing
    He, Hong
    Sun, Shaorui
    [J]. ACS OMEGA, 2023, : 5464 - 5474
  • [10] De novo molecular design using deep reinforcement learning methods
    Chen, Hongming
    Olivercrona, Markus
    Blaschke, Thomas
    Engkvist, Ola
    Kogej, Thierry
    Tyrchan, Christian
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256