Research progress in atmospheric boundary layer

被引:8
|
作者
Che JunHui [1 ,2 ,3 ]
Zhao Ping [1 ,2 ]
Shi Qian [4 ]
Yang QiuYan [3 ]
机构
[1] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing 210044, Peoples R China
[3] Shandong Meteorol Serv Ctr, Jinan 250031, Peoples R China
[4] Shandong Meteorol Observ, Jinan 250031, Peoples R China
来源
关键词
Atmospheric boundary layer height; Super deep convective boundary layer; Boundary-layer parameterization schemes; LARGE-SCALE SUBSIDENCE; LAND-SURFACE; TIBETAN PLATEAU; VERTICAL DIFFUSION; EDDY-DIFFUSIVITY; TOP HEIGHT; HEAVY RAIN; MODEL; DEPTH; SIMULATION;
D O I
10.6038/cjg2021O0057
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The atmospheric boundary layer (ABL) plays an important role in the evolutions of cloud and convection. This article reviews research advances in the methodology of calculating the ABL height, the ABL spatial and temporal variations and structures, the physical mechanisms responsible for the ABL development and parameterizations. The calculation methods of the ABL height include two categories. One is based on observed atmospheric vertical profiles and another is based on parameterization schemes in numerical models. The frequency distribution of the ABL height shows a remarkable diurnal variation, and there are different Gamma distributions for the frequency of stable, neutral, and convective boundary layers. The moisture content at land surface exerts remarkable effects on the development of ABL. Corresponding to the different surface thermodynamic and terrain features, the ABL height shows the substantial horizontal heterogeneity. The ABL height is significantly higher over the Tibetan Plateau than over the plains. Under the influence of intense surface heating, the convective boundary layer and the residual layer may produce a super deep ABL above 4000 m through a positive feedback mechanism. The unified parameterization framework including atmospheric boundary layer, shallow convection, and cloud physical processes is the development trend of numerical forecast models in the future.
引用
收藏
页码:735 / 751
页数:17
相关论文
共 137 条
  • [1] Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles
    Ao, Chi O.
    Waliser, Duane E.
    Chan, Steven K.
    Li, Jui-Lin
    Tian, Baijun
    Xie, Feiqin
    Mannucci, Anthony J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [2] The Nature, Theory, and Modeling of Atmospheric Planetary Boundary Layers
    Baklanov, Alexander A.
    Grisogono, Branko
    Bornstein, Robert
    Mahrt, Larry
    Zilitinkevich, Sergej S.
    Taylor, Peter
    Larsen, Soren E.
    Rotach, Mathias W.
    Fernando, H. J. S.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2011, 92 (02) : 123 - 128
  • [3] The land surface-atmosphere interaction: A review based on observational and global modeling perspectives
    Betts, AK
    Ball, JH
    Beljaars, ACM
    Miller, MJ
    Viterbo, PA
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) : 7209 - 7225
  • [4] Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS)
    Betts, AK
    Viterbo, P
    Beljaars, A
    Pan, HL
    Hong, SY
    Goulden, M
    Wofsy, S
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D18) : 23079 - 23085
  • [5] Mixing height estimation from sodar data - A critical discussion
    Beyrich, F
    [J]. ATMOSPHERIC ENVIRONMENT, 1997, 31 (23) : 3941 - 3953
  • [6] Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer
    Blay-Carreras, E.
    Pino, D.
    de Arellano, J. Vila-Guerau
    van de Boer, A.
    De Coster, O.
    Darbieu, C.
    Hartogensis, O.
    Lohou, F.
    Lothon, M.
    Pietersen, H.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (09) : 4515 - 4530
  • [7] Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model
    Bogenschutz, Peter A.
    Gettelman, Andrew
    Morrison, Hugh
    Larson, Vincent E.
    Craig, Cheryl
    Schanen, David P.
    [J]. JOURNAL OF CLIMATE, 2013, 26 (23) : 9655 - 9676
  • [8] RECENT CHANGES IN THE NORTH-AMERICAN ARCTIC BOUNDARY-LAYER IN WINTER
    BRADLEY, RS
    KEIMIG, FT
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D5) : 8851 - 8858
  • [9] A New Moist Turbulence Parameterization in the Community Atmosphere Model
    Bretherton, Christopher S.
    Park, Sungsu
    [J]. JOURNAL OF CLIMATE, 2009, 22 (12) : 3422 - 3448
  • [10] Reasons for the Extremely High-Ranging Planetary Boundary Layer over the Western Tibetan Plateau in Winter
    Chen, Xuelong
    Skerlak, Bojan
    Rotach, Mathias W.
    Anel, Juan A.
    Su, Zhonbgo
    Ma, Yaoming
    Li, Maoshan
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2016, 73 (05) : 2021 - 2038