Adaptive Empirical Bayesian Smoothing Splines

被引:8
|
作者
Serra, Paulo [1 ,2 ]
Krivobokova, Tatyana [2 ]
机构
[1] Univ Amsterdam, Korteweg Vries Inst Math, Amsterdam, Netherlands
[2] Georg August Univ Gottingen, Inst Math Stochast, Gottingen, Germany
来源
BAYESIAN ANALYSIS | 2017年 / 12卷 / 01期
关键词
adaptive estimation; unbiased risk minimiser; maximum likelihood; oracle parameters; POSTERIOR DISTRIBUTIONS; CONVERGENCE-RATES; SELECTION;
D O I
10.1214/16-BA997
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop and study adaptive empirical Bayesian smoothing splines. These are smoothing splines with both smoothing parameter and penalty order determined via the empirical Bayes method from the marginal likelihood of the model. The selected order and smoothing parameter are used to construct adaptive credible sets with good frequentist coverage for the underlying regression function. We use these credible sets as a proxy to show the superior performance of adaptive empirical Bayesian smoothing splines compared to frequentist smoothing splines.
引用
收藏
页码:219 / 238
页数:20
相关论文
共 50 条