Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

被引:50
|
作者
Roman-Roy, Narciso [1 ]
机构
[1] Dept Matemat Aplicada IV, E-08034 Barcelona, Spain
关键词
classical field theories; Lagrangian and Hamiltonian formalisms; fiber bundles; multisymplectic manifolds; PRECANONICAL QUANTIZATION; CONSTRAINT ALGORITHM; GEOMETRIC ASPECTS; MOMENTUM MAP; FORMULATION; BUNDLES; MECHANICS; EQUATIONS; EXTENSION; CALCULUS;
D O I
10.3842/SIGMA.2009.100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation ( which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] ON THE k-SYMPLECTIC, k-COSYMPLECTIC AND MULTISYMPLECTIC FORMALISMS OF CLASSICAL FIELD THEORIES
    Roman-Roy, Narciso
    Rey, Angel M.
    Salgado, Modesto
    Vilarino, Silvia
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (01): : 113 - 137
  • [2] CLASSICAL LAGRANGIAN AND HAMILTONIAN FORMALISMS FOR ELEMENTARY EXTENDONS
    EIZENBERG, E
    NEEMAN, Y
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1989, 102 (05): : 1183 - 1197
  • [3] Extended Hamiltonian systems in multisymplectic field theories
    Echeverria-Enriquez, Arturo
    de Leon, Manuel
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [4] Gauge transformations in the Lagrangian and Hamiltonian formalisms of generally covariant theories
    Pons, JM
    Salisbury, DC
    Shepley, LC
    [J]. PHYSICAL REVIEW D, 1997, 55 (02): : 658 - 668
  • [5] THE LAGRANGIAN AND HAMILTONIAN FORMALISMS FOR THE CLASSICAL RELATIVISTIC ELECTRODYNAMICS MODELS REVISITED
    Bogolubov, N. N., Jr.
    Prykarpatsky, A. K.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2009, 54 (8-9): : 753 - 766
  • [6] LAGRANGIAN AND HAMILTONIAN BRST FORMALISMS
    BATLLE, C
    GOMIS, J
    PARIS, J
    ROCA, J
    [J]. PHYSICS LETTERS B, 1989, 224 (03) : 288 - 290
  • [7] LAGRANGIAN AND HAMILTONIAN FORMALISMS - ANALYSIS OF CLASSICAL MECHANICS ON TANGENT AND COTANGENT BUNDLES
    CARATU, G
    MARMO, G
    SIMONI, A
    VITALE, B
    ZACCARIA, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 31 (01): : 152 - 172
  • [8] Geometry of multisymplectic Hamiltonian first-order field theories
    Echeverria-Enríquez, A
    Muñoz-Lecanda, MC
    Román-Roy, N
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) : 7402 - 7444
  • [9] Hamilton-Jacobi theory in multisymplectic classical field theories
    de Leon, Manuel
    Daniel Prieto-Martinez, Pedro
    Roman-Roy, Narciso
    Vilarino, Silvia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [10] LAGRANGIAN + HAMILTONIAN FORMALISMS WITH SUPPLEMENTARY CONDITIONS
    SCHWARTZ, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) : 903 - &