Lorentz-breaking massive gravity in curved space

被引:71
|
作者
Blas, D. [1 ]
Comelli, D. [2 ]
Nesti, F. [3 ,4 ]
Pilo, L. [3 ,4 ]
机构
[1] Ecole Polytech Fed Lausanne, FSB, ITP, LPPC, CH-1015 Lausanne, Switzerland
[2] Ist Nazl Fis Nucl, Sez Ferrara, I-35131 Ferrara, Italy
[3] Univ Aquila, Dipartimento Fis, I-67010 Laquila, Italy
[4] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Assergi, Italy
来源
PHYSICAL REVIEW D | 2009年 / 80卷 / 04期
关键词
FIELD-THEORY; STABILITY;
D O I
10.1103/PhysRevD.80.044025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic study of the different phases of Lorentz-breaking massive gravity in a curved background is performed. For tensor and vector modes, the analysis is very close to that of Minkowski space. The most interesting results are in the scalar sector where, generically, there are two propagating degrees of freedom (DOF). While in maximally symmetric spaces ghostlike instabilities are inevitable, they can be avoided in a FRW background. The phases with less than two DOF in the scalar sector are also studied. Curvature allows an interesting interplay with the mass parameters; in particular, we have extended the Higuchi bound of de Sitter to Friedman-Robertson-Walker and Lorentz-breaking masses. As in dS, when the bound is saturated there is no propagating DOF in the scalar sector. In a number of phases the smallness of the kinetic terms gives rise to strongly coupled scalar modes at low energies. Finally, we have computed the gravitational potentials for pointlike sources. In the general case we recover the general relativity predictions at small distances, whereas the modifications appear at distances of the order of the characteristic mass scale. In contrast with Minkowski space, these corrections may not spoil the linear approximation at large distances.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Analytical expression for a class of spherically symmetric solutions in Lorentz-breaking massive gravity
    Li, Ping
    Li, Xin-zhou
    Xi, Ping
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (11)
  • [2] Lorentz-violating massive gravity in curved space
    Grisa, Luca
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11):
  • [3] Improved derivation of the Smarr formula for Lorentz-breaking gravity
    Pacilio, Costantino
    Liberati, Stefano
    [J]. PHYSICAL REVIEW D, 2017, 95 (12)
  • [4] Spontaneous Lorentz breaking and massive gravity
    Berezhiani, Z.
    Comelli, D.
    Nesti, F.
    Pilo, L.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [5] On the anomalies in Lorentz-breaking theories
    Baeta Scarpelli, A. P.
    Mariz, T.
    Nascimento, J. R.
    Petrov, A. Yu.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (12):
  • [6] Aetherlike Lorentz-breaking actions
    Gomes, M.
    Nascimento, J. R.
    Petrov, A. Yu.
    da Silva, A. J.
    [J]. PHYSICAL REVIEW D, 2010, 81 (04):
  • [7] On the nonlinear electrodynamics in a Lorentz-breaking scenario
    Neres Junior, E.
    Felipe, J. C. C.
    Baeta Scarpelli, A. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (22)
  • [8] Modification entropy of Kerr-Sen-like black hole in Lorentz-breaking bumblebee gravity
    Tan, Xia
    Wang, Cong
    Yang, Shu-Zheng
    [J]. FRONTIERS IN PHYSICS, 2024, 12
  • [9] Superfield supersymmetric aetherlike Lorentz-breaking models
    Farias, C. F.
    Lehum, A. C.
    Nascimento, J. R.
    Petrov, A. Yu.
    [J]. PHYSICAL REVIEW D, 2012, 86 (06):
  • [10] Lorentz-breaking Rarita-Schwinger model
    Gomes, M.
    Mariz, T.
    Nascimento, J. R.
    Petrov, A. Yu
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)