Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge

被引:73
|
作者
Aleksandrov, N. L. [1 ]
Kindysheva, S. V. [1 ]
Kukaev, E. N. [1 ]
Starikovskaya, S. M. [2 ]
Starikovskii, A. Yu. [3 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[2] Ecole Polytech, F-91128 Palaiseau, France
[3] Drexel Univ, Philadelphia, PA 19104 USA
关键词
ENERGY-POOLING REACTIONS; DISSOCIATIVE RECOMBINATION; SATURATED-HYDROCARBONS; NONEQUILIBRIUM PLASMA; RATE COEFFICIENTS; RATE CONSTANTS; COMBUSTION; KINETICS; NITROGEN; O-2;
D O I
10.1134/S1063780X09100109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The ignition dynamics of a CH4: O-2: N-2: Ar = 1: 4: 15: 80 mixture by a high-voltage nanosecond discharge is simulated numerically with allowance for experimental data on the dynamics of the discharge current and discharge electric field. The calculated induction time agrees well with experimental data. It is shown that active particles produced in the discharge at a relatively low deposited energy can reduce the induction time by two orders of magnitude. Comparison of simulation results for mixtures with and without nitrogen shows that addition of nitrogen to the mixture leads to a decrease in the average electron energy in the discharge and gives rise to new mechanisms for accumulation of oxygen atoms due to the excitation of nitrogen electronic states and their subsequent quenching in collisions with oxygen molecules. Acceleration of the discharge-initiated ignition is caused by a faster initiation of chain reactions due to the production of active particles, first of all oxygen atoms, in the discharge.
引用
收藏
页码:867 / 882
页数:16
相关论文
共 50 条
  • [1] Simulation of the ignition of a methane-air mixture by a high-voltage nanosecond discharge
    N. L. Aleksandrov
    S. V. Kindysheva
    E. N. Kukaev
    S. M. Starikovskaya
    A. Yu. Starikovskii
    [J]. Plasma Physics Reports, 2009, 35 : 867 - 882
  • [2] Ignition of acetylene by high-voltage nanosecond discharge
    Kosarev, I. N.
    Pakhomov, A. I.
    Kindysheva, S. V.
    Aleksandrov, N. L.
    [J]. TECHNICAL PHYSICS LETTERS, 2013, 39 (07) : 606 - 608
  • [3] Ignition of acetylene by high-voltage nanosecond discharge
    I. N. Kosarev
    A. I. Pakhomov
    S. V. Kindysheva
    N. L. Aleksandrov
    [J]. Technical Physics Letters, 2013, 39 : 606 - 608
  • [4] Effects of Vibrational Excitation on Nanosecond Discharge Enhanced Methane-Air Ignition
    Mao, Xingqian
    Chen, Qi
    [J]. AIAA JOURNAL, 2018, 56 (11) : 4312 - 4320
  • [5] Experimental study of the effect of nanosecond pulse discharge parameters on the methane-air mixture combustion
    Tian, Jie
    Xiong, Yong
    Wang, Lu
    Wang, Yongqi
    Liu, Peng
    Shi, Xinguo
    Wang, Ning
    Yin, Wei
    Cheng, Yong
    Zhao, Qingwu
    [J]. FUEL, 2024, 364
  • [6] Plasma decay in the afterglow of a high-voltage nanosecond discharge in air
    N. L. Aleksandrov
    E. M. Anokhin
    S. V. Kindysheva
    A. A. Kirpichnikov
    I. N. Kosarev
    M. M. Nudnova
    S. M. Starikovskaya
    A. Yu. Starikovskii
    [J]. Plasma Physics Reports, 2012, 38 : 179 - 186
  • [7] Plasma decay in the afterglow of a high-voltage nanosecond discharge in air
    Aleksandrov, N. L.
    Anokhin, E. M.
    Kindysheva, S. V.
    Kirpichnikov, A. A.
    Kosarev, I. N.
    Nudnova, M. M.
    Starikovskaya, S. M.
    Starikovskii, A. Yu.
    [J]. PLASMA PHYSICS REPORTS, 2012, 38 (02) : 179 - 186
  • [8] Finite differences study of ignition in a methane-air mixture flow
    Bubnovich, V
    Toledo, M
    Gonzalez, H
    Salas, R
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (19) : 4955 - 4963
  • [9] Ignition characteristics of methane-air mixture at low initial temperature
    Yang, Chao
    Han, Qing
    Liu, Haibo
    Wang, Yuanyuan
    Cheng, Ran
    [J]. FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [10] Critical Conditions and Induction Time of Ignition for a Methane-Air Mixture
    Kudryashova, O. B.
    Galenko, Yu A.
    Sypin, E., V
    Sysoeva, M. O.
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 2020, 56 (03) : 267 - 270