Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep

被引:4
|
作者
Al Kalaldeh, Mohammad [1 ,2 ]
Gibson, John [1 ,2 ]
Duijvesteijn, Naomi [1 ,2 ]
Daetwyler, Hans D. [1 ,3 ,4 ]
MacLeod, Iona [1 ,3 ]
Moghaddar, Nasir [1 ,2 ]
Lee, Sang Hong [5 ]
van der Werf, Julius H. J. [1 ,2 ]
机构
[1] Cooperat Res Ctr Sheep Ind Innovat, Armidale, NSW 2351, Australia
[2] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia
[3] Agr Victoria, Ctr AgriBiosci, Bundoora, Vic 3083, Australia
[4] La Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic 3083, Australia
[5] Univ South Australia, Australian Ctr Precis Hlth, Canc Res Inst, Adelaide, SA 5000, Australia
关键词
QUANTITATIVE TRAIT LOCI; MIXED-MODEL ANALYSIS; UNDERLYING VARIATION; GENOTYPE IMPUTATION; NEMATODE RESISTANCE; VARIANTS; RELIABILITY; INFECTION; SELECTION; GAMMA;
D O I
10.1186/s12711-019-0476-4
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
BackgroundThis study aimed at (1) comparing the accuracies of genomic prediction for parasite resistance in sheep based on whole-genome sequence (WGS) data to those based on 50k and high-density (HD) single nucleotide polymorphism (SNP) panels; (2) investigating whether the use of variants within quantitative trait loci (QTL) regions that were selected from regional heritability mapping (RHM) in an independent dataset improved the accuracy more than variants selected from genome-wide association studies (GWAS); and (3) comparing the prediction accuracies between variants selected from WGS data to variants selected from the HD SNP panel.ResultsThe accuracy of genomic prediction improved marginally from 0.160.02 and 0.18 +/- 0.01 when using all the variants from 50k and HD genotypes, respectively, to 0.19 +/- 0.01 when using all the variants from WGS data. Fitting a GRM from the selected variants alongside a GRM from the 50k SNP genotypes improved the prediction accuracy substantially compared to fitting the 50k SNP genotypes alone. The gain in prediction accuracy was slightly more pronounced when variants were selected from WGS data compared to when variants were selected from the HD panel. When sequence variants that passed the GWAS -log10(p value) threshold of 3 across the entire genome were selected, the prediction accuracy improved by 5% (up to 0.21 +/- 0.01), whereas when selection was limited to sequence variants that passed the same GWAS -log10(p value) threshold of 3 in regions identified by RHM, the accuracy improved by 9% (up to 0.25 +/- 0.01).Conclusions Our results show that through careful selection of sequence variants from the QTL regions, the accuracy of genomic prediction for parasite resistance in sheep can be improved. These findings have important implications for genomic prediction in sheep.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Using imputed whole-genome sequence data to improve the accuracy of genomic prediction for parasite resistance in Australian sheep
    Mohammad Al Kalaldeh
    John Gibson
    Naomi Duijvesteijn
    Hans D. Daetwyler
    Iona MacLeod
    Nasir Moghaddar
    Sang Hong Lee
    Julius H. J. van der Werf
    [J]. Genetics Selection Evolution, 51
  • [2] Accuracy of genomic prediction using imputed whole-genome sequence data in white layers
    Heidaritabar, M.
    Calus, M. P. L.
    Megens, H-J.
    Vereijken, A.
    Groenen, M. A. M.
    Bastiaansen, J. W. M.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2016, 133 (03) : 167 - 179
  • [3] Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations
    Moghaddar, Nasir
    Khansefid, Majid
    van der Werf, Julius H. J.
    Bolormaa, Sunduimijid
    Duijvesteijn, Naomi
    Clark, Samuel A.
    Swan, Andrew A.
    Daetwyler, Hans D.
    MacLeod, Iona M.
    [J]. GENETICS SELECTION EVOLUTION, 2019, 51 (01)
  • [4] Genomic prediction based on selected variants from imputed whole-genome sequence data in Australian sheep populations
    Nasir Moghaddar
    Majid Khansefid
    Julius H. J. van der Werf
    Sunduimijid Bolormaa
    Naomi Duijvesteijn
    Samuel A. Clark
    Andrew A. Swan
    Hans D. Daetwyler
    Iona M. MacLeod
    [J]. Genetics Selection Evolution, 51
  • [5] Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle
    van Binsbergen, Rianne
    Calus, Mario P. L.
    Bink, Marco C. A. M.
    van Eeuwijk, Fred A.
    Schrooten, Chris
    Veerkamp, Roel F.
    [J]. GENETICS SELECTION EVOLUTION, 2015, 47
  • [6] Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle
    Rianne van Binsbergen
    Mario P. L. Calus
    Marco C. A. M. Bink
    Fred A. van Eeuwijk
    Chris Schrooten
    Roel F. Veerkamp
    [J]. Genetics Selection Evolution, 47
  • [7] Strategies for Obtaining and Pruning Imputed Whole-Genome Sequence Data for Genomic Prediction
    Ye, Shaopan
    Gao, Ning
    Zheng, Rongrong
    Chen, Zitao
    Teng, Jinyan
    Yuan, Xiaolong
    Zhang, Hao
    Chen, Zanmou
    Zhang, Xiquan
    Li, Jiaqi
    Zhang, Zhe
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [8] Increased Accuracy of Genomic Prediction Using Preselected SNPs from GWAS with Imputed Whole-Genome Sequence Data in Pigs
    Liu, Yiyi
    Zhang, Yuling
    Zhou, Fuchen
    Yao, Zekai
    Zhan, Yuexin
    Fan, Zhenfei
    Meng, Xianglun
    Zhang, Zebin
    Liu, Langqing
    Yang, Jie
    Wu, Zhenfang
    Cai, Gengyuan
    Zheng, Enqin
    [J]. ANIMALS, 2023, 13 (24):
  • [9] Genomic prediction using imputed whole-genome sequence variants in Brown Swiss Cattle
    Frischknecht, Mirjam
    Meuwissen, Theodorus H. E.
    Bapst, Beat
    Seefried, Franz R.
    Flury, Christine
    Garrick, Dorian
    Signer-Hasler, Heidi
    Stricker, Christian
    Bieber, Anna
    Fries, Ruedi
    Russ, Ingolf
    Soelkner, Johann
    Bagnato, Alessandro
    Gredler-Grandl, Birgit
    [J]. JOURNAL OF DAIRY SCIENCE, 2018, 101 (02) : 1292 - 1296
  • [10] Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data
    TENG Jin-yan
    YE Shao-pan
    GAO Ning
    CHEN Zi-tao
    DIAO Shu-qi
    LI Xiu-jin
    YUAN Xiao-long
    ZHANG Hao
    LI Jia-qi
    ZHANG Xi-quan
    ZHANG Zhe
    [J]. Journal of Integrative Agriculture, 2022, 21 (04) : 1126 - 1136