Asymptotic normality of extreme quantile estimators based on the peaks-over-threshold approach

被引:3
|
作者
Diebolt, Jean
Guillou, Armelle
Ribereau, Pierre
机构
[1] Univ Strasbourg 1, IRMA, Dept Math, F-67084 Strasbourg, France
[2] Univ Marne la Vallee, Equipe Anal & Math Appl, CNRS, F-77454 Marne La Vallee 2, France
[3] Univ Montpellier 2, F-34095 Montpellier 5, France
关键词
extreme quantile; generalized Pareto distribution; generalized probability-weighted moments estimators; maximum likelihood estimators; peaks-over-threshold approach;
D O I
10.1080/03610920601036317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The POT (Peaks-Over-Threshold) approach consists of using the generalized Pareto distribution (GPD) to approximate the distribution of excesses over thresholds. In this article, we establish the asymptotic normality of the well-known extreme quantile estimators based on this POT method, under very general assumptions. As an illustration, from this result, we deduce the asymptotic normality of the POT extreme quantile estimators in the case where the maximum likelihood (ML) or the generalized probability-weighted moments (GPWM) methods are used. Simulations are provided in order to compare the efficiency of these estimators based on ML or GPWM methods with classical ones proposed in the literature.
引用
收藏
页码:869 / 886
页数:18
相关论文
共 50 条
  • [1] Extreme values identification in regression using a peaks-over-threshold approach
    Wong, Tong Siu Tung
    Li, Wai Keung
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (03) : 566 - 576
  • [2] A PEAKS-OVER-THRESHOLD ANALYSIS OF EXTREME WIND SPEEDS
    ROSS, WH
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (04): : 328 - 335
  • [3] Estimating Peaks of Stationary Random Processes: A Peaks-over-Threshold Approach
    Duthinh, Dat
    Pintar, Adam L.
    Simiu, Emil
    [J]. ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2017, 3 (04):
  • [4] Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula
    Javier Acero, Francisco
    Agustin Garcia, Jose
    Cruz Gallego, Maria
    [J]. JOURNAL OF CLIMATE, 2011, 24 (04) : 1089 - 1105
  • [5] Functional peaks-over-threshold analysis
    de Fondeville, Raphael
    Davison, Anthony C.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1392 - 1422
  • [6] Combination of the peaks-over-threshold and bootstrapping methods for extreme value prediction
    Naess, A
    Clausen, PH
    [J]. STRUCTURAL SAFETY, 2001, 23 (04) : 315 - 330
  • [7] Confidence intervals for return levels for the peaks-over-threshold approach
    Schendel, Thomas
    Thongwichian, Rossukon
    [J]. ADVANCES IN WATER RESOURCES, 2017, 99 : 53 - 59
  • [8] Threshold selection for regional peaks-over-threshold data
    Roth, M.
    Jongbloed, G.
    Buishand, T. A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2016, 43 (07) : 1291 - 1309
  • [9] A THRESHOLD APPROACH FOR PEAKS-OVER-THRESHOLD MODELING USING MAXIMUM PRODUCT OF SPACINGS
    Wong, Tony Siu Tung
    Li, Wai Keung
    [J]. STATISTICA SINICA, 2010, 20 (03) : 1257 - 1272
  • [10] The estimation of extreme quantiles of wind velocity using L-moments in the peaks-over-threshold approach
    Pandey, MD
    Van Gelder, PHAJM
    Vrijling, JK
    [J]. STRUCTURAL SAFETY, 2001, 23 (02) : 179 - 192