Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa

被引:57
|
作者
Bergner, A. G. N. [1 ]
Strecker, M. R. [1 ]
Trauth, M. H. [1 ]
Deino, A. [2 ]
Gasse, F. [3 ]
Blisniuk, P. [4 ]
Duehnforth, M. [5 ]
机构
[1] Univ Potsdam, Inst Geowissensch, D-14476 Potsdam, Germany
[2] Berkeley Geochronol Ctr, Berkeley, CA USA
[3] CEREGE, Aix En Provence, France
[4] Stanford Univ, Sch Earth Sci, Stanford, CA 94305 USA
[5] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
关键词
NAKURU-ELMENTEITA BASIN; HYDROLOGICAL CHANGES; WATER-BUDGET; KYR BP; NAIVASHA; VALLEY; HISTORY; SEDIMENTATION; PLEISTOCENE; EQUATORIAL;
D O I
10.1016/j.quascirev.2009.07.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen (14)C and (40)Ar/(39)Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2804 / 2816
页数:13
相关论文
共 50 条