Stacking fault energies in austenitic stainless steels

被引:172
|
作者
Lu, Jun [1 ]
Hultman, Lars [1 ]
Holmstrom, Erik [2 ]
Antonsson, Karin H. [3 ]
Grehk, Mikael [3 ]
Li, Wei [4 ]
Vitos, Levente [4 ]
Golpayegani, Ardeshir [3 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[2] Sandvik Coromant R&D, SE-12680 Stockholm, Sweden
[3] Sandvik Mat Technol, R&D Ctr, SE-81181 Sandviken, Sweden
[4] Royal Inst Technol, Dept Mat Sci & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Stacking fault energy; Austenitic steel; Plasticity; Transmission electron microscopy; Density functional theory; MARTENSITIC-TRANSFORMATION; 1ST-PRINCIPLES THEORY; TWIP STEELS; MN; DISLOCATION; TEMPERATURE; METALS; IRON; ALLOY; MODEL;
D O I
10.1016/j.actamat.2016.03.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We measure the stacking fault energy of a set of 20 at% Cr-austenitic stainless steels by means of transmission electron microscopy using the weak beam dark field imaging technique and the isolated dislocations method. The measurements are analyzed together with first principles calculations. The results show that experiment and theory agree very well for the investigated concentration range of Mn (0-8%) and Ni (11-30%). The calculations show that simultaneous relaxation of atomic and spin degrees of freedom is important in order to find the, global energy minimum for these materials. Our results clearly show the great potential of the weak beam dark field technique to obtain accurate measurements of the stacking fault energy of austenitic steels and that the reliable predictability of first principles calculations can be used to design new steels with optimized mechanical properties. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 50 条
  • [1] Deformation Properties of Austenitic Stainless Steels with Different Stacking Fault Energies
    Molnar, David
    Engberg, Goran
    Li, Wei
    Vitos, Levente
    [J]. THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 190 - 197
  • [2] STACKING-FAULT ENERGIES OF 7 COMMERCIAL AUSTENITIC STAINLESS-STEELS
    SCHRAMM, RE
    REED, RP
    [J]. METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1975, 6 (07): : 1345 - 1351
  • [3] Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels
    Lu, Song
    Hu, Qing-Miao
    Johansson, Borje
    Levente Vitos
    [J]. ACTA MATERIALIA, 2011, 59 (14) : 5728 - 5734
  • [4] Stacking fault energy and magnetism in austenitic stainless steels
    Vitos, L.
    Korzhavyi, P. A.
    Nilsson, J-O
    Johansson, B.
    [J]. PHYSICA SCRIPTA, 2008, 77 (06)
  • [5] STACKING-FAULT ENERGY IN AUSTENITIC STAINLESS-STEELS
    RHODES, CG
    THOMPSON, AW
    [J]. JOM-JOURNAL OF METALS, 1976, 28 (12): : A39 - A39
  • [6] COMPOSITIONAL EFFECTS ON DEFORMATION MODES ANNEALING TWIN FREQUENCIES AND STACKING FAULT ENERGIES OF AUSTENITIC STAINLESS STEELS
    FAWLEY, R
    QUADER, MA
    DODD, RA
    [J]. TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, 1968, 242 (05): : 771 - &
  • [7] STACKING-FAULT TETRAHEDRA AND DIHEDRA IN AUSTENITIC STAINLESS-STEELS
    ARTIGUE, F
    CONDAT, M
    FAYARD, M
    [J]. SCRIPTA METALLURGICA, 1977, 11 (07): : 623 - 626
  • [8] Effect of Carbon Fraction on Stacking Fault Energy of Austenitic Stainless Steels
    Lee, Tae-Ho
    Ha, Heon-Young
    Hwang, Byoungchul
    Kim, Sung-Joon
    Shin, Eunjoo
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2012, 43A (12): : 4455 - 4459
  • [9] Effect of Carbon Fraction on Stacking Fault Energy of Austenitic Stainless Steels
    Tae-Ho Lee
    Heon-Young Ha
    Byoungchul Hwang
    Sung-Joon Kim
    Eunjoo Shin
    [J]. Metallurgical and Materials Transactions A, 2012, 43 : 4455 - 4459
  • [10] Effect of Stacking Fault Energy on Cryo Deformation Behavior of Austenitic Stainless Steels
    Kumar, G. Venkata Sarath
    Sivaprasad, K.
    [J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (06) : 2643 - 2652