Extending the akaike information criterion to mixture regression models

被引:51
|
作者
Naik, Prasad A. [1 ]
Shi, Peide
Tsai, Chih-Ling
机构
[1] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
[2] Nucl Safety Solut Ltd, Toronto, ON M5G 1X6, Canada
[3] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
关键词
akaike information criterion; cluster analysis; EM algorithm; mixture models; model selection; variable selection;
D O I
10.1198/016214506000000861
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine the problem of jointly selecting the number of components and variables in finite mixture regression models. We find that the Akaike information criterion is unsatisfactory for this purpose because it overestimates the number of components, which in turn results in incorrect variables being retained in the model. Therefore, we derive a new information criterion, the mixture regression criterion (MRC), that yields marked improvement in model selection due to what we call the "clustering penalty function." Moreover, we prove the asymptotic efficiency of the MRC. We show that it performs well in Monte Carlo studies for the same or different covariates across components with equal or unequal sample sizes. We also present an empirical example on sales territory management to illustrate the application and efficacy of the MRC. Finally, we generalize the MRC to mixture quasi-likelihood and mixture autoregressive models, thus extending its applicability to non-Gaussian models, discrete responses, and dependent data.
引用
收藏
页码:244 / 254
页数:11
相关论文
共 50 条
  • [1] Performance of Akaike Information Criterion and Bayesian Information Criterion in Selecting Partition Models and Mixture Models
    Liu, Qin
    Charleston, Michael A.
    Richards, Shane A.
    Holland, Barbara R.
    [J]. SYSTEMATIC BIOLOGY, 2023, 72 (01) : 92 - 105
  • [2] An Akaike information criterion for multiple event mixture cure models
    Dirick, Lore
    Claeskens, Gerda
    Baesens, Bart
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 241 (02) : 449 - 457
  • [3] The Kullback information criterion for mixture regression models
    Hafidi, Bezza
    Mkhadri, Abdallah
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) : 807 - 815
  • [4] A hybridized consistent Akaike type information criterion for regression models in the presence of multicollinearity
    Dunder, Emre
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 53 (10) : 5008 - 5017
  • [5] The Akaike information criterion in weighted regression of immittance data
    Ingdal, Mats
    Johnsen, Roy
    Harrington, David A.
    [J]. ELECTROCHIMICA ACTA, 2019, 317 : 648 - 653
  • [6] THE CHOICE OF EXTREMAL MODELS BY AKAIKE INFORMATION CRITERION
    TURKMAN, KF
    [J]. JOURNAL OF HYDROLOGY, 1985, 82 (3-4) : 307 - 315
  • [7] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Solka, JL
    Wegman, EJ
    Priebe, CE
    Poston, WL
    Rogers, GW
    [J]. STATISTICS AND COMPUTING, 1998, 8 (03) : 177 - 188
  • [8] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Jeffrey L. Solka
    Edward J. Wegman
    Carey E. Priebe
    Wendy L. Poston
    George W. Rogers
    [J]. Statistics and Computing, 1998, 8 : 177 - 188
  • [9] On bias correction of the Akaike information criterion in linear models
    Noda, K
    Miyaoka, E
    Itoh, M
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (08) : 1845 - 1857
  • [10] Akaike Information Criterion for Selecting Variables in the Nested Error Regression Model
    Kubokawa, Tatsuya
    Srivastava, Muni S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (15) : 2626 - 2642