Prime and composite Laurent polynomials

被引:23
|
作者
Pakovich, F. [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2009年 / 133卷 / 07期
基金
以色列科学基金会;
关键词
Ritt's theorems; Decompositions of rational functions; Decompositions of Laurent polynomials; RATIONAL FUNCTIONS; THEOREM; SUBSTITUTIONS; RITT;
D O I
10.1016/j.bulsci.2009.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper [J. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922) 5 1-66] Ritt constructed the theory of functional decompositions of polynomials with complex coefficients. In particular, he described explicitly polynomial solutions of the functional equation f (p(z)) = g(q(z)). In this paper we study the equation above in the case where f, g, p, q are holomorphic functions on compact Riemann surfaces. We also construct a self-contained theory of functional decompositions of rational functions with at most two poles generalizing the Ritt theory. In particular, we give new proofs of the theorems of Rill and of the theorem of Bilu and Tichy. (c) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:693 / 732
页数:40
相关论文
共 50 条
  • [1] Prime and composite polynomials
    Ritt, J. F.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1922, 23 (1-4) : 51 - 66
  • [2] PRIME AND COMPOSITE POLYNOMIALS
    DOREY, F
    WHAPLES, G
    [J]. JOURNAL OF ALGEBRA, 1974, 28 (01) : 88 - 101
  • [3] INVERTIBLE LAURENT POLYNOMIALS
    BLAIR, WD
    KETTNER, JE
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 448 - 448
  • [4] ORTHOGONAL LAURENT POLYNOMIALS
    HENDRIKSEN, E
    VANROSSUM, H
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1986, 89 (01): : 17 - 36
  • [5] Interpolating Laurent polynomials
    Cooper, SC
    Gustafson, PE
    [J]. ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 143 - 150
  • [6] Symmetric orthogonal Laurent polynomials
    Cochran, L
    Cooper, SC
    [J]. ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 111 - 141
  • [7] SEMIRINGS OF SKEW LAURENT POLYNOMIALS
    Maslyaev, Dmitriy Andreevich
    Chermnykh, Vasiliy Vladimirovich
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 521 - 533
  • [8] The "classical" Laurent biorthogonal polynomials
    Zhedanov, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 98 (01) : 121 - 147
  • [9] Spectral factorization of Laurent polynomials
    Goodman, TNT
    Micchelli, CA
    Rodriguez, G
    Seatzu, S
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1997, 7 (04) : 429 - 454
  • [10] Laurent Polynomials and Superintegrable Maps
    Hone, Andrew N. W.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3