The diversity and evolution of microbial dissimilatory phosphite oxidation

被引:22
|
作者
Ewens, Sophia D. [1 ,2 ]
Gomberg, Alexa F. S. [1 ]
Barnum, Tyler P. [1 ]
Borton, Mikayla A. [3 ]
Carlson, Hans K. [4 ]
Wrighton, Kelly C. [3 ]
Coates, John D. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Energy & Biosci Inst, Berkeley, CA 94720 USA
[3] Colorado State Univ, Dept Soil & Crop Sci, Ft Collins, CO 80523 USA
[4] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
关键词
CO2; fixation; phosphite; glycine reductive pathway; Desulfotignum; Phosphitivorax; ESCHERICHIA-COLI; WASTE-WATER; GEN; NOV; PHOSPHORUS; QUALITY; METABOLISM; REDUCTION; ALIGNMENT; RESOURCE; REDOX;
D O I
10.1073/pnas.2020024118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (E-o') of -650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria, and Desulfomonilia_A. Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Anaerobic dissimilatory phosphite oxidation, an extremely efficient concept of microbial electron economy
    Mao, Zhuqing
    Mueller, Nicolai
    Borusak, Sabrina
    Schleheck, David
    Schink, Bernhard
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2023, 25 (11) : 2068 - 2074
  • [2] AMP- dependent phosphite dehydrogenase, a phosphorylating enzyme in dissimilatory phosphite oxidation
    Mao, Zhuqing
    Fleming, Jennifer R.
    Mayans, Olga
    Frey, Jasmin
    Schleheck, David
    Schink, Bernhard
    Mueller, Nicolai
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (45)
  • [3] Identification and Heterologous Expression of Genes Involved in Anaerobic Dissimilatory Phosphite Oxidation by Desulfotignum phosphitoxidans
    Simeonova, Diliana Dancheva
    Wilson, Marlena Marie
    Metcalf, William W.
    Schink, Bernhard
    [J]. JOURNAL OF BACTERIOLOGY, 2010, 192 (19) : 5237 - 5244
  • [4] Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle
    Anantharaman, Karthik
    Hausmann, Bela
    Jungbluth, Sean P.
    Kantor, Rose S.
    Lavy, Adi
    Warren, Lesley A.
    Rappe, Michael S.
    Pester, Michael
    Loy, Alexander
    Thomas, Brian C.
    Banfield, Jillian F.
    [J]. ISME JOURNAL, 2018, 12 (07): : 1715 - 1728
  • [5] Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle
    Karthik Anantharaman
    Bela Hausmann
    Sean P. Jungbluth
    Rose S. Kantor
    Adi Lavy
    Lesley A. Warren
    Michael S. Rappé
    Michael Pester
    Alexander Loy
    Brian C. Thomas
    Jillian F. Banfield
    [J]. The ISME Journal, 2018, 12 : 1715 - 1728
  • [6] Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles
    Figueroa, I. A.
    Coates, J. D.
    [J]. ADVANCES IN APPLIED MICROBIOLOGY, VOL 98, 2017, 98 : 93 - 117
  • [7] Evolution of microbial diversity during prolonged starvation
    Finkel, SE
    Kolter, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) : 4023 - 4027
  • [8] Anaerobic oxidation of diclofenac coupled with dissimilatory iron reduction: Kinetics, mechanism, and microbial community function succession
    Qian, Yiguang
    Pan, Weijie
    Wang, Luke
    Huang, Donghang
    Li, Juying
    Li, Siyue
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [9] Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution
    Zheng, Yangyang
    Hong, Kunqiang
    Wang, Baowei
    Liu, Dingyu
    Chen, Tao
    Wang, Zhiwen
    [J]. ACS SYNTHETIC BIOLOGY, 2021, 10 (07): : 1574 - 1586
  • [10] Diversity and reductive evolution of mitochondria among microbial eukaryotes
    Hjort, Karin
    Goldberg, Alina V.
    Tsaousis, Anastasios D.
    Hirt, Robert P.
    Embley, T. Martin
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2010, 365 (1541) : 713 - 727