On the Cardinality of Layers in Even-Valued n-Dimensional Lattice

被引:0
|
作者
Andreeva, T. V. [1 ]
Semenov, Yu. S. [1 ]
机构
[1] Bauman Moscow State Tech Univ, Moscow 105005, Russia
关键词
poset; layer; asymptotics; generating function;
D O I
10.26907/2541-7746.2022.2-3.153-169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we explicitly calculated terms additional to the main one of cardinality asymptotics of central layers in the n-dimensional k-valued lattice Ek nfor even k as n -> infinity. The main term had been found by V.B. Alekseev for a certain class of posets. The case of odd k, which is technically less complicated, was the major focus of our previous work.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 50 条
  • [1] SOME RELATIONS FOR SUBSETS OF LAYERS OF AN N-DIMENSIONAL K-VALUED LATTICE
    KATERINOCHKINA, NN
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (03): : 103 - 105
  • [2] EXTENSION OF N-DIMENSIONAL LATTICE-VALUED NEGATIONS
    Palmeira, E. S.
    Bedregal, B. C.
    [J]. DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 306 - 311
  • [3] On n-dimensional lattice transformations
    Magnus, W
    [J]. ACTA MATHEMATICA, 1935, 64 (01) : 353 - 367
  • [4] ON THE SYMMETRY ON N-DIMENSIONAL TRANSLATIONAL LATTICE
    SOLDATOV, EA
    KUZMIN, EA
    ILIUKHIN, VV
    BELOV, NV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1981, 257 (02): : 361 - 363
  • [5] The Existence of Universal Polynomials for the Class of Linear Functions in Even-Valued Logics
    A. A. Voronenko
    [J]. Moscow University Computational Mathematics and Cybernetics, 2023, 47 (2) : 61 - 62
  • [6] Even triangulations of n-dimensional pseudo-manifolds
    Rubinstein, J. Hyam
    Tillmann, Stephan
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 2949 - 2984
  • [7] Vertex identifying codes for the n-dimensional lattice
    Stanton, Brendon
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 53 : 299 - 307
  • [8] Controlability, stability and the n-dimensional Toda lattice
    Puta, M
    Tudoran, RM
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (03): : 241 - 247
  • [9] LATTICE-POINTS OF N-DIMENSIONAL TETRAHEDRA
    BEUKERS, F
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1975, 78 (05): : 365 - 372
  • [10] On integrals of n-dimensional fuzzy-number-valued functions
    Zhang, BK
    [J]. FUZZY SETS AND SYSTEMS, 2002, 127 (03) : 371 - 376