Numerical simulation of a hypersonic flow past a blunt body

被引:10
|
作者
Hu, Yumeng [1 ]
Huang, Haiming [1 ]
Zhang, Zimao [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Engn Mech, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Chemical equilibrium; Hypersonic; Inviscid flow; Viscous flow;
D O I
10.1108/HFF-05-2016-0187
中图分类号
O414.1 [热力学];
学科分类号
摘要
Purpose - The purpose of this paper is to explore the characteristics of hypersonic flow past a blunt body. Design/methodology/approach - The implicit finite volume schemes are derived from axisymmetric Navier-Stokes equations by means of AUSM+ and LU-SGS methods, and programmed in FORTRAN. Based on the verified result that a 2D axisymmetric chemical equilibrium flow has a good agreement with the literature, the characteristics of hypersonic flow past a sphere are simulated by using four different models which involve four factors, namely, viscous, inviscid, equilibrium and calorically perfect gas. Findings - Compared with the calorically perfect gas under hypervelocity condition, the shock wave of the equilibrium gas is more close to the blunt body, gas density and pressure become bigger, but gas temperature is lower due to the effect of real gas. Viscous effects are not obvious in the calculations of the equilibrium gas or the calorically perfect gas. In a word, the model of equilibrium gas is more suitable for hypersonic flow and the calculation of viscous flow has a smaller error. Originality/value - The computer codes are developed to simulate the characteristics of hypersonic flows, and this study will be helpful for the design of the thermal protection systemin hypersonic vehicles.
引用
收藏
页码:1351 / 1364
页数:14
相关论文
共 50 条