Ordinal Regression with Neuron Stick-Breaking for Medical Diagnosis

被引:13
|
作者
Liu, Xiaofeng [1 ,2 ]
Zou, Yang [1 ]
Song, Yuhang [3 ]
Yang, Chao [3 ]
You, Jane [4 ]
Kumar, B. V. K. Vijaya [1 ,5 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Fanhan Informat Tech, Suzhou, Peoples R China
[3] Univ Southern Calif, Los Angeles, CA 90089 USA
[4] Hong Kong Polytech Univ, Kowloon, Hong Kong, Peoples R China
[5] Carnegie Mellon Univ Africa, Kigali, Rwanda
关键词
Medical diagnosis; Ordinal regression; Deep neural network; Stick-breaking; Unimodal label smoothing; AGE ESTIMATION; CANCER;
D O I
10.1007/978-3-030-11024-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classification for medical diagnosis usually involves inherently ordered labels corresponding to the level of health risk. Previous multi-task classifiers on ordinal data often use several binary classification branches to compute a series of cumulative probabilities. However, these cumulative probabilities are not guaranteed to be monotonically decreasing. It also introduces a large number of hyper-parameters to be fine-tuned manually. This paper aims to eliminate or at least largely reduce the effects of those problems. We propose a simple yet efficient way to rephrase the output layer of the conventional deep neural network. We show that our methods lead to the state-of-the-art accuracy on Diabetic Retinopathy dataset and Ultrasound Breast dataset with very little additional cost.
引用
收藏
页码:335 / 344
页数:10
相关论文
共 50 条
  • [1] Unimodal regularized neuron stick-breaking for ordinal classification
    Liu, Xiaofeng
    Fan, Fangfang
    Kong, Lingsheng
    Diao, Zhihui
    Xie, Wanqing
    Lu, Jun
    You, Jane
    [J]. NEUROCOMPUTING, 2020, 388 : 34 - 44
  • [2] Permuted and Augmented Stick-Breaking Bayesian Multinomial Regression
    Zhang, Quan
    Zhou, Mingyuan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18 : 1 - 33
  • [3] Logistic Stick-Breaking Process
    Ren, Lu
    Du, Lan
    Carin, Lawrence
    Dunson, David B.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 203 - 239
  • [4] Kernel stick-breaking processes
    Dunson, David B.
    Park, Ju-Hyun
    [J]. BIOMETRIKA, 2008, 95 (02) : 307 - 323
  • [5] Latent Stick-Breaking Processes
    Rodriguez, Abel
    Dunson, David B.
    Gelfand, Alan E.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 647 - 659
  • [6] Stick-breaking autoregressive processes
    Griffin, J. E.
    Steel, M. F. J.
    [J]. JOURNAL OF ECONOMETRICS, 2011, 162 (02) : 383 - 396
  • [7] Another stick-breaking game
    Rosentrater, CR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (06): : 571 - 572
  • [8] Tractable Bayesian density regression via logit stick-breaking priors
    Rigon, Tommaso
    Durante, Daniele
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 131 - 142
  • [9] On the use of Markovian stick-breaking priors
    Lippitt, William
    Sethuraman, Sunder
    [J]. STOCHASTIC PROCESSES AND FUNCTIONAL ANALYSIS: NEW PERSPECTIVES, 2021, 774 : 153 - 174
  • [10] Sequential and continuous time stick-breaking
    Arndt, Peter F.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,