Topological embeddings into random 2-complexes

被引:1
|
作者
Farber, Michael [1 ]
Nowik, Tahl [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London, England
[2] Bar Ilan Univ, Dept Math, IL-5290002 Ramat Gan, Israel
关键词
multiparameter threshold; random simplicial complexes; RANDOM SIMPLICIAL COMPLEXES; HOMOLOGICAL CONNECTIVITY;
D O I
10.1002/rsa.20987
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider 2-dimensional random simplicial complexes Y in the multiparameter model. We establish the multiparameter threshold for the property that every 2-dimensional simplicial complex S admits a topological embedding into Y asymptotically almost surely. Namely, if in the procedure of the multiparameter model on n vertices, each i-dimensional simplex is taken with probability p(i) = p(i)(n), then the threshold is p0p13p22=1n. Our claim in one direction is in fact slightly stronger, namely, we show that if p0p13p22 is sufficiently larger than 1n then every S has a fixed subdivision S ' which admits a simplicial embedding into Y asymptotically almost surely. In the other direction we show that if p0p13p22 is sufficiently smaller than 1n, then asymptotically almost surely, the torus does not admit a topological embedding into Y.
引用
收藏
页码:664 / 675
页数:12
相关论文
共 50 条
  • [1] Topology of Random 2-Complexes
    D. Cohen
    A. Costa
    M. Farber
    T. Kappeler
    [J]. Discrete & Computational Geometry, 2012, 47 : 117 - 149
  • [2] Embeddings of 2-complexes into 3-manifolds
    Glock, J
    Hog-Angeloni, CI
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2005, 14 (01) : 9 - 20
  • [3] Topology of Random 2-Complexes
    Cohen, D.
    Costa, A.
    Farber, M.
    Kappeler, T.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (01) : 117 - 149
  • [4] Geometry and topology of random 2-complexes
    Costa, A. E.
    Farber, M.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (02) : 883 - 927
  • [5] THE FUNDAMENTAL GROUP OF RANDOM 2-COMPLEXES
    Babson, Eric
    Hoffman, Christopher
    Kahle, Matthew
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) : 1 - 28
  • [6] On Simple Connectivity of Random 2-Complexes
    Zur Luria
    Yuval Peled
    [J]. Discrete & Computational Geometry, 2022, 67 : 17 - 32
  • [7] Geometry and topology of random 2-complexes
    A. E. Costa
    M. Farber
    [J]. Israel Journal of Mathematics, 2015, 209 : 883 - 927
  • [8] 2-complexes with unique embeddings in 3-space
    Georgakopoulos, Agelos
    Kim, Jaehoon
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (01) : 156 - 174
  • [9] Homological connectivity of random 2-complexes
    Linial, Nathan
    Meshulam, Roy
    [J]. COMBINATORICA, 2006, 26 (04) : 475 - 487
  • [10] On Simple Connectivity of Random 2-Complexes
    Zur Luria
    Peled, Yuval
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 67 (01) : 17 - 32