UNIFORM CONVERGENCE OF SINE INTEGRAL-SERIES

被引:0
|
作者
Korus, Peter [1 ]
Krasniqi, Xhevat Z. [2 ]
Szal, Bogdan [3 ]
机构
[1] Univ Szeged, Dept Math, Juhasz Gyula Fac Educ, Hattyas Utca 10, H-6725 Szeged, Hungary
[2] Univ Prishtina, Fac Educ, Dept Math & Informat, Ave Mother Theresa 5, Prishtine 10000, Kosovo
[3] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Ul Szafrana 4a, PL-65516 Zielona Gora, Poland
关键词
Uniform convergence; sine integral-series; general monotone sequence; admissible functions; TRIGONOMETRIC SERIES;
D O I
10.2989/16073606.2021.1891152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the class GMSF(alpha, beta, gamma) of General Monotone Sequence of Functions with majorants alpha, beta, gamma : (R) over bar (2)(+) -> (R) over bar (+), (R) over bar (+) := [0, infinity). For a sequence of admissible functions {f(k)(t)}(k=1)(infinity) subset of C belonging to this class we find necessary and sufficient conditions under which the sine integral-series integral(infinity)(0)Sigma(k=1) f(k)(t) sin ku sin tv dt converges in the regular sense uniformly in (u, v) is an element of <(R)over bar(+)(2).
引用
收藏
页码:711 / 722
页数:12
相关论文
共 50 条