Parameter Estimation with the Ordered l2 Regularization via an Alternating Direction Method of Multipliers

被引:2
|
作者
Humayoo, Mahammad [1 ,2 ]
Cheng, Xueqi [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 20期
关键词
ADMM; big data; feature selection; optimization; ridge regression; ordered regularization; elastic net; VARIABLE SELECTION; CLASSIFICATION; OPTIMIZATION; DISCOVERY; LASSO;
D O I
10.3390/app9204291
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Regularization is a popular technique in machine learning for model estimation and for avoiding overfitting. Prior studies have found that modern ordered regularization can be more effective in handling highly correlated, high-dimensional data than traditional regularization. The reason stems from the fact that the ordered regularization can reject irrelevant variables and yield an accurate estimation of the parameters. How to scale up the ordered regularization problems when facing large-scale training data remains an unanswered question. This paper explores the problem of parameter estimation with the ordered <mml:semantics>l2</mml:semantics>-regularization via Alternating Direction Method of Multipliers (ADMM), called ADMM-O<mml:semantics>l2</mml:semantics>. The advantages of ADMM-O<mml:semantics>l2</mml:semantics> include (i) scaling up the ordered <mml:semantics>l2</mml:semantics> to a large-scale dataset, (ii) predicting parameters correctly by excluding irrelevant variables automatically, and (iii) having a fast convergence rate. Experimental results on both synthetic data and real data indicate that ADMM-O<mml:semantics>l2</mml:semantics> can perform better than or comparable to several state-of-the-art baselines.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Image deblurring with mixed regularization via the alternating direction method of multipliers
    Yin, Dongyu
    Wang, Ganquan
    Xu, Bin
    Kuang, Dingbo
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (04)
  • [2] STOCHASTIC ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR STRUCTURED REGULARIZATION
    Suzuki, Taiji
    [J]. JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2015, 28 (01): : 105 - 124
  • [3] Phase Retrieval via the Alternating Direction Method of Multipliers
    Liang, Junli
    Stoica, Petre
    Jing, Yang
    Li, Jian
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (01) : 5 - 9
  • [4] L2,1-Norm Regularized Robust and Sparse Linear Discriminant Analysis via an Alternating Direction Method of Multipliers
    Li, Chun-Na
    Li, Yi
    Meng, Yan-Hui
    Ren, Pei-Wei
    Shao, Yuan-Hai
    [J]. IEEE ACCESS, 2023, 11 : 34250 - 34259
  • [5] Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization
    Gao, Hao
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (07): : 2838 - 2850
  • [6] Robust Fluence Map Optimization Via Alternating Direction Method of Multipliers with Automatic Parameter Optimization
    Gao, H.
    [J]. MEDICAL PHYSICS, 2015, 42 (06) : 3493 - 3493
  • [7] Making the Most of Bag of Words: Sentence Regularization with Alternating Direction Method of Multipliers
    Yogatama, Dani
    Smith, Noah A.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [8] The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
    Min Sun
    Jing Liu
    [J]. Journal of Inequalities and Applications, 2017
  • [9] The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
    Sun, Min
    Liu, Jing
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017, : 1 - 15
  • [10] Sparse feedback synthesis via the alternating direction method of multipliers
    Lin, Fu
    Fardad, Makan
    Jovanovic, Mihailo R.
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 4765 - 4770