Total generalized variation-based Retinex image decomposition

被引:11
|
作者
Wang, Chunxue [1 ]
Zhang, Huayan [2 ]
Liu, Ligang [3 ]
机构
[1] Dunhuang Acad, Jiuquan, Gansu, Peoples R China
[2] Tiangong Univ, Sch Comp Sci & Software Engn, Tianjin, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei, Anhui, Peoples R China
来源
VISUAL COMPUTER | 2021年 / 37卷 / 01期
基金
中国国家自然科学基金;
关键词
Retinex theory; Image decomposition; Total generalized variation regularization; Alternating minimization scheme; MODEL;
D O I
10.1007/s00371-020-01888-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Human visual system (HVS) can perceive color under varying illumination conditions, and Retinex theory is precisely aimed to simulate and explain how the HVS perceives reflectance regardless of different illumination conditions. In this paper, we introduce a reflectance and illumination decomposition model for the Retinex problem via total generalized variation regularization andH1decomposition. The total generalized variation regularization ameliorates the staircasing artifacts that appear in the reflectance component of existing total variation-based models andH1norm guarantees smoother illumination. We analyze the existence and uniqueness of the proposed model and employ an alternating minimization scheme based on split Bregman iteration. We present numerous numerical experiments on both grayscale and color images to make comparisons with several state-of-the-art methods and demonstrate that our method is comparable both quantitatively and qualitatively.
引用
收藏
页码:77 / 93
页数:17
相关论文
共 50 条
  • [1] Total generalized variation-based Retinex image decomposition
    Wang, Chunxue
    Zhang, Huayan
    Liu, Ligang
    [J]. VISUAL COMPUTER, 2020,
  • [2] Total generalized variation-based Retinex image decomposition
    Chunxue Wang
    Huayan Zhang
    Ligang Liu
    [J]. The Visual Computer, 2021, 37 : 77 - 93
  • [3] Total variation-based image noise reduction with generalized fidelity function
    Lee, Suk-Ho
    Kang, Moon Gi
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (11) : 832 - 835
  • [4] Contrast Enhancement via Dual Graph Total Variation-Based Image Decomposition
    Liu, Xianming
    Zhai, Deming
    Bai, Yuanchao
    Ji, Xiangyang
    Gao, Wen
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (08) : 2463 - 2476
  • [5] Spatially dependent regularization parameter selection for total generalized variation-based image denoising
    Tian-Hui Ma
    Ting-Zhu Huang
    Xi-Le Zhao
    [J]. Computational and Applied Mathematics, 2018, 37 : 277 - 296
  • [6] Spatially dependent regularization parameter selection for total generalized variation-based image denoising
    Ma, Tian-Hui
    Huang, Ting-Zhu
    Zhao, Xi-Le
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01): : 277 - 296
  • [7] Acceleration methods for total variation-based image denoising
    Chang, QS
    Chern, IL
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 982 - 994
  • [8] An Iterative Scheme for Total Variation-Based Image Denoising
    Yi, Dokkyun
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (03) : 648 - 671
  • [9] An improved total variation-based image fusion algorithm
    [J]. Liu, Z. (liuzhe@nwpu.edu.cn), 1600, Shanghai Jiaotong University (47):
  • [10] An Iterative Scheme for Total Variation-Based Image Denoising
    Dokkyun Yi
    [J]. Journal of Scientific Computing, 2014, 58 : 648 - 671