A Probabilistic Joint Sparse Regression Model for Semisupervised Hyperspectral Unmixing

被引:14
|
作者
Seyyedsalehi, Seyyede Fatemeh [1 ]
Rabiee, Hamid R. [1 ]
Soltani-Farani, Ali [1 ]
Zarezade, Ali [1 ]
机构
[1] Sharif Univ Technol, Dept Comp Engn, Tehran 11365, Iran
关键词
Joint sparse regression; Laplacian scale mixture (LSM) model; semisupervised hyperspectral unmixing; spectral libraries;
D O I
10.1109/LGRS.2017.2649418
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semisupervised hyperspectral unmixing finds the ratio of spectral library members in the mixture of hyperspectral pixels to find the proportion of pure materials in a natural scene. The two main challenges are noise in observed spectral vectors and high mutual coherence of spectral libraries. To tackle these challenges, we propose a probabilistic sparse regression method for linear hyperspectral unmixing, which utilizes the implicit relations of neighboring pixels. We partition the hyperspectral image into rectangular patches. The sparse coefficients of pixels in each patch are assumed to be generated from a Laplacian scale mixture model with the same latent variables. These latent variables specify the probability of existence of endmembers in the mixture of each pixel. Experiments on synthetic and real hyperspectral images illustrate the superior performance of the proposed method over alternatives.
引用
收藏
页码:592 / 596
页数:5
相关论文
共 50 条
  • [1] Parallel Method for Sparse Semisupervised Hyperspectral Unmixing
    Nascimento, Jose M. P.
    Rodriguez Alves, Jose M.
    Plaza, Antonio
    Silva, Vitor
    Bioucas-Dias, Jose M.
    [J]. HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING III, 2013, 8895
  • [2] Bilateral Joint-Sparse Regression for Hyperspectral Unmixing
    Huang, Jie
    Di, Wu-Chao
    Wang, Jin-Ju
    Lin, Jie
    Huang, Ting-Zhu
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10147 - 10161
  • [3] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488
  • [4] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [5] A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing
    Themelis, Konstantinos E.
    Rontogiannis, Athanasios A.
    Koutroumbas, Konstantinos D.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (02) : 585 - 599
  • [6] Joint-Sparse-Blocks Regression for Total Variation Regularized Hyperspectral Unmixing
    Huang, Jie
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Deng, Liang-Jian
    [J]. IEEE ACCESS, 2019, 7 : 138779 - 138791
  • [7] Efficient Hyperspectral Sparse Regression Unmixing With Multilayers
    Shen, Xiangfei
    Chen, Lihui
    Liu, Haijun
    Su, Xi
    Wei, Wenjia
    Zhu, Xia
    Zhou, Xichuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Pizurica, Aleksandra
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6986 - 6989
  • [9] Hyperspectral Unmixing with Robust Collaborative Sparse Regression
    Li, Chang
    Ma, Yong
    Mei, Xiaoguang
    Liu, Chengyin
    Ma, Jiayi
    [J]. REMOTE SENSING, 2016, 8 (07)
  • [10] SpectralSpatial Joint Sparse NMF for Hyperspectral Unmixing
    Dong, Le
    Yuan, Yuan
    Lu, Xiaoqiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 2391 - 2402