An object-based classification approach in mapping tree mortality using high spatial resolution imagery

被引:79
|
作者
Guo, Qinghua
Kelly, Maggi
Gong, Peng
Liu, Desheng
机构
[1] Univ Calif Merced, Sch Engn, Merced, CA 95344 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
基金
美国国家航空航天局;
关键词
D O I
10.2747/1548-1603.44.1.24
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In California, a newly discovered virulent pathogen (Phytophthora ramorum) has killed thousands of trees, including tanoak (Lithocarpus densiflorus), coast live oak (Quercus agrifolia), and black oak (Quercus kelloggii). Mapping the distribution of overstory mortality associated with the pathogen is an important part of disease management. In this study, we developed an object-based approach, including an image segmentation process and a knowledge-based classifier, to detect individual tree mortality in imagery of I m spatial resolution. The combined segmentation and classification methods provided an easy and intuitive way to incorporate human knowledge into the classification process. The object-based approach significantly outperformed a pixel-based maximum likelihood classification method in mapping the tree mortality on high-spatial-resolution multispectral imagery.
引用
收藏
页码:24 / 47
页数:24
相关论文
共 50 条
  • [1] An object-based classification approach for high-spatial resolution imagery
    Li, Xinliang
    Zhao, Shuhe
    Rui, Yikang
    Tang, Wei
    [J]. GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [2] Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery
    Malinverni, Eva Savina
    Tassetti, Anna Nora
    Mancini, Adriano
    Zingaretti, Primo
    Frontoni, Emanuele
    Bernardini, Annamaria
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2011, 25 (06) : 1025 - 1043
  • [3] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Sasaki, Takeshi
    Imanishi, Junichi
    Ioki, Keiko
    Morimoto, Yukihiro
    Kitada, Katsunori
    [J]. LANDSCAPE AND ECOLOGICAL ENGINEERING, 2012, 8 (02) : 157 - 171
  • [4] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Takeshi Sasaki
    Junichi Imanishi
    Keiko Ioki
    Yukihiro Morimoto
    Katsunori Kitada
    [J]. Landscape and Ecological Engineering, 2012, 8 : 157 - 171
  • [5] Object-based gully feature extraction using high spatial resolution imagery
    Shruthi, Rajesh B. V.
    Kerle, Norman
    Jetten, Victor
    [J]. GEOMORPHOLOGY, 2011, 134 (3-4) : 260 - 268
  • [6] Multiagent Object-Based Classifier for High Spatial Resolution Imagery
    Zhong, Yanfei
    Zhao, Bei
    Zhang, Liangpei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 841 - 857
  • [7] Object-based urban landcover mapping methodology using high spatial resolution imagery and airborne laser scanning
    Williams, David A. R.
    Matasci, Giona
    Coops, Nicholas C.
    Gergel, Sarah E.
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (04)
  • [8] Object-based habitat mapping using very high spatial resolution multispectral and hyperspectral imagery with LiDAR data
    Onojeghuo, Alex Okiemute
    Onojeghuo, Ajoke Ruth
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 59 : 79 - 91
  • [9] Object-based classification approach for greenhouse mapping using Landsat-8 imagery
    Wu Chaofan
    Deng Jinsong
    Wang Ke
    Ma Ligang
    Tahmassebi, Amir Reza Shah
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2016, 9 (01) : 79 - 88
  • [10] A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
    Li, Manchun
    Ma, Lei
    Blaschke, Thomas
    Cheng, Liang
    Tiede, Dirk
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 49 : 87 - 98