SUFFICIENT DIMENSION REDUCTION UNDER DIMENSION-REDUCTION-BASED IMPUTATION WITH PREDICTORS MISSING AT RANDOM

被引:2
|
作者
Yang, Xiaojie [1 ]
Wang, Qihua [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
[2] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Kernel imputation; missing at random; missing predictors; sliced inverse regression; sufficient dimension reduction; SLICED INVERSE REGRESSION; PRINCIPAL HESSIAN DIRECTIONS; ASYMPTOTICS; INFERENCE;
D O I
10.5705/ss.202017.0288
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In some practical problems, a subset of predictors may be subject to missingness, especially when the dimension of the predictors is high. In this case, the standard sufficient dimension-reduction (SDR) methods cannot be applied directly to avoid the curse of dimensionality. Therefore, a dimension-reduction-based imputation method is developed such that any spectral-decomposition-based SDR method for full data can be applied to the case where predictors are missing at random. The sliced inverse regression (SIR) technique is used to illustrate this procedure. The proposed imputation estimator of the candidate matrix for the SIR, called the DRI-SIR estimator, is asymptotically normal under some mild conditions. Hence, the resulting estimator of the central subspace is root-n consistent. The finite-sample performances of the proposed method is evaluated through comprehensive simulations and real data are analyzed in an application of the method.
引用
收藏
页码:1751 / 1778
页数:28
相关论文
共 50 条
  • [1] Sufficient dimension reduction with missing predictors
    Li, Lexin
    Lu, Wenbin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 822 - 831
  • [2] SUFFICIENT DIMENSION REDUCTION IN REGRESSIONS WITH MISSING PREDICTORS
    Zhu, Liping
    Wang, Tao
    Zhu, Lixing
    [J]. STATISTICA SINICA, 2012, 22 (04) : 1611 - 1637
  • [3] Sufficient Dimension Reduction for Censored Predictors
    Tomassi, Diego
    Forzani, Liliana
    Bura, Efstathia
    Pfeiffer, Ruth
    [J]. BIOMETRICS, 2017, 73 (01) : 220 - 231
  • [4] Dimension reduction with missing response at random
    Guo, Xu
    Wang, Tao
    Xu, Wangli
    Zhu, Lixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 228 - 242
  • [5] Missing data analysis with sufficient dimension reduction
    ZHENG, Siming
    WAN, Alan T. K.
    ZHOU, Yong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 630 - 651
  • [6] Sufficient dimension reduction in regressions with categorical predictors
    Chiaromonte, F
    Cook, RD
    Li, B
    [J]. ANNALS OF STATISTICS, 2002, 30 (02): : 475 - 497
  • [7] Sufficient dimension reduction for longitudinally measured predictors
    Pfeiffer, Ruth M.
    Forzani, Liliana
    Bura, Efstathia
    [J]. STATISTICS IN MEDICINE, 2012, 31 (22) : 2414 - 2427
  • [8] Frechet sufficient dimension reduction for random objects
    Ying, Chao
    Yu, Zhou
    [J]. BIOMETRIKA, 2022, 109 (04) : 975 - 992
  • [9] Optimal sufficient dimension reduction in regressions with categorical predictors
    Wen, Xuerong
    Cook, R. Dennis
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (06) : 1961 - 1978
  • [10] Sufficient dimension reduction in multivariate regressions with categorical predictors
    Hilafu, Haileab
    Yin, Xiangrong
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 63 : 139 - 147