PIGMENT UNMIXING OF HYPERSPECTRAL IMAGES OF PAINTINGS USING DEEP NEURAL NETWORKS

被引:0
|
作者
Rohani, Neda [1 ]
Pouyet, Emeline [2 ]
Walton, Marc [2 ]
Cossairt, Oliver [1 ]
Katsaggelos, Aggelos K. [1 ]
机构
[1] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Sci Studies Art, Evanston, IL USA
基金
美国国家科学基金会;
关键词
Hyperspectral imaging; nonlinear unmixing; pigment identification; deep neural network; fusion; SPECTRAL-SPATIAL CLASSIFICATION; TURBID-MEDIA THEORY; SINGLE-CONSTANT;
D O I
10.1109/icassp.2019.8682838
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, the problem of automatic nonlinear unmixing of hyperspectral reflectance data using works of art as test cases is described. We use a deep neural network to decompose a given spectrum quantitatively to the abundance values of pure pigments. We show that adding another step to identify the constituent pigments of a given spectrum leads to more accurate unmixing results. Towards this, we use another deep neural network to identify pigments first and integrate this information to different layers of the network used for pigment unmixing. As a test set, the hyperspectral images of a set of mock-up paintings consisting of a broad palette of pigment mixtures, and pure pigment exemplars, were measured. The results of the algorithm on the mock-up test set are reported and analyzed.
引用
收藏
页码:3217 / 3221
页数:5
相关论文
共 50 条
  • [1] Hyperspectral Unmixing via Deep Convolutional Neural Networks
    Zhang, Xiangrong
    Sun, Yujia
    Zhang, Jingyan
    Wu, Peng
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1755 - 1759
  • [2] Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks
    Cruz-Guerrero, Ines A.
    Campos-Delgado, Daniel Ulises
    Mejia-Rodriguez, Aldo R.
    Leon, Raquel
    Ortega, Samuel
    Fabelo, Himar
    Camacho, Rafael
    Plaza, Maria de la Luz
    Callico, Gustavo
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2024, 11 (04) : 240 - 251
  • [3] Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
    Wan, Lulu
    Chen, Tao
    Plaza, Antonio
    Cai, Haojie
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11669 - 11682
  • [4] SEMI-SUPERVISED HYPERSPECTRAL UNMIXING WITH VERY DEEP CONVOLUTIONAL NEURAL NETWORKS
    Bai, Jiayu
    Feng, Ruyi
    Wang, Lizhe
    Li, Hao
    Li, Fengpeng
    Zhong, Yanfei
    Zhang, Liangpei
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2400 - 2403
  • [5] DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing
    Su, Yuanchao
    Li, Jun
    Plaza, Antonio
    Marinoni, Andrea
    Gamba, Paolo
    Chakravortty, Somdatta
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4309 - 4321
  • [6] HYPERSPECTRAL UNMIXING USING DEEP LEARNING
    Wang, Chenn-Jian
    Li, Hong
    Tang, Yuan-Yan
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 7 - 13
  • [7] AUTOMATIC PIGMENT IDENTIFICATION ON ROMAN EGYPTIAN PAINTINGS BY USING SPARSE MODELING OF HYPERSPECTRAL IMAGES
    Rohani, Neda
    Salvant, Johanna
    Bahaadini, Sara
    Cossairt, Oliver
    Walton, Marc
    Katsaggelos, Aggelos
    [J]. 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 2111 - 2115
  • [8] Hyperspectral Image Reconstruction of Heritage Artwork Using RGB Images and Deep Neural Networks
    Chen, Ailin
    Jesus, Rui
    Vilarigues, Marcia
    [J]. 19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 97 - 102
  • [9] Spectral-spatial classification of hyperspectral images using deep convolutional neural networks
    Yue, Jun
    Zhao, Wenzhi
    Mao, Shanjun
    Liu, Hui
    [J]. REMOTE SENSING LETTERS, 2015, 6 (06) : 468 - 477
  • [10] Dynamical Hyperspectral Unmixing With Variational Recurrent Neural Networks
    Borsoi, Ricardo A. A.
    Imbiriba, Tales
    Closas, Pau
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 2279 - 2294