Mean first-passage time to a small absorbing target in an elongated planar domain

被引:15
|
作者
Grebenkov, Denis S. [1 ]
Skvortsov, Alexei T. [2 ]
机构
[1] Ecole Polytech, Lab Phys Matiere Condensee, IP Paris, UMR 7643,CNRS, F-91128 Palaiseau, France
[2] Def Sci & Technol, Maritime Div, 506 Lorimer St, Port Melbourne, Vic 3207, Australia
来源
NEW JOURNAL OF PHYSICS | 2020年 / 22卷 / 11期
关键词
diffusion; first-passage time; homogenisation; reactivity; elongated domain; 1ST PASSAGE TIME; NARROW ESCAPE; ASYMPTOTIC ANALYSIS; PART II; COMPUTATION;
D O I
10.1088/1367-2630/abc91f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive an approximate but fully explicit formula for the mean first-passage time (MFPT) to a small absorbing target of arbitrary shape in a general elongated domain in the plane. Our approximation combines conformal mapping, boundary homogenisation, and Fick-Jacobs equation to express the MFPT in terms of diffusivity and geometric parameters. A systematic comparison with a numerical solution of the original problem validates its accuracy when the starting point is not too close to the target. This is a practical tool for a rapid estimation of the MFPT for various applications in chemical physics and biology.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Mean first-passage time to a small absorbing target in three-dimensional elongated domains
    Grebenkov, Denis S.
    Skvortsov, Alexei T.
    [J]. PHYSICAL REVIEW E, 2022, 105 (05)
  • [2] Effects of target anisotropy on harmonic measure and mean first-passage time
    Chaigneau, Adrien
    Grebenkov, Denis S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (23)
  • [3] Mean first-passage time on a family of small-world treelike networks
    Li, Long
    Sun, Weigang
    Wang, Guixiang
    Xu, Guanghui
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (03):
  • [4] Mean first-passage time in optical bistable systems
    Ning Li-Juan
    Xu Wei
    [J]. CHINESE PHYSICS LETTERS, 2006, 23 (12) : 3180 - 3182
  • [5] Estimating network topology by the mean first-passage time
    Yang, Pu
    Wang, Qun
    Zheng, Zhigang
    [J]. PHYSICAL REVIEW E, 2012, 86 (02)
  • [6] Mean first-passage time of quantum transition processes
    Qiu, Rong-Tao
    Dai, Wu-Sheng
    Xie, Mi
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (20) : 4748 - 4755
  • [7] Mean first-passage time of an anisotropic diffusive searcher
    Levernier, N.
    Benichou, O.
    Voituriez, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (02)
  • [8] MEAN FIRST-PASSAGE TIME TO ZERO FOR WEAR PROCESSES
    Lefebvre, Mario
    [J]. STOCHASTIC MODELS, 2010, 26 (01) : 46 - 53
  • [9] Mean first-passage time for random walks on undirected networks
    Zhang, Zhongzhi
    Julaiti, Alafate
    Hou, Baoyu
    Zhang, Hongjuan
    Chen, Guanrong
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 691 - 697
  • [10] Learning shape distance based on mean first-passage time
    [J]. Han, M. (minhan@dlut.edu.cn), 1600, Science Press (40):