Multichannel Semi-blind Deconvolution (MSBD) of seismic signals

被引:10
|
作者
Mirel, Merabi [1 ]
Cohen, Israel [1 ]
机构
[1] Technion Israel Inst Technol, IL-3200003 Haifa, Israel
来源
SIGNAL PROCESSING | 2017年 / 135卷
关键词
Seismic deconvolution; Semi-blind; Wavelet estimation; Reflectivity recovery; Sparse deconvolution; Multichannel deconvolution; BASIS PURSUIT; INVERSION; DECOMPOSITION;
D O I
10.1016/j.sigpro.2017.01.026
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Seismic deconvolution is a general problem associated with recovering the reflectivity series from a seismic signal when the wavelet is known. In this paper, we solve the problem of semi-blind seismic deconvolution, where the wavelet is known up to some error. The Multichannel Semi-blind Deconvolution (MSBD) model was developed for cases where there is some uncertainty in the assumed wavelet. We present a novel, two-stage iterative algorithm that recovers both the reflectivity and the wavelet. While the reflectivity series is recovered using sparse modeling of the signal, the wavelet is recovered using L2 minimization, exploiting the fact that all channels share the same wavelet. The L2 minimization solution is revised to suit the multichannel case. An analysis is made for each wavelet uncertainty according to the parameters of the respective recovery method. We show that our algorithm outperforms the straightforward method of assuming the initial wavelet. As a side result, we also show that the final estimated wavelet fits the true wavelet better than the initial one.
引用
收藏
页码:253 / 262
页数:10
相关论文
共 50 条
  • [1] Multichannel blind deconvolution of seismic signals
    Kaaresen, KF
    Taxt, T
    [J]. GEOPHYSICS, 1998, 63 (06) : 2093 - 2107
  • [2] Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals
    Kazemi, Nasser
    Bongajum, Emmanuel
    Sacchi, Mauricio D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3200 - 3207
  • [3] Spectral semi-blind deconvolution with hybrid regularization
    Deng, L. Z.
    Cao, L.
    Zhu, H.
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2014, 64 : 91 - 96
  • [4] Multichannel blind deconvolution application to marine seismic
    Nsiri, B
    Boucher, JM
    Chonavel, T
    [J]. OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 2761 - 2766
  • [5] Identifiability conditions for blind and semi-blind multiuser multichannel identification
    Deneire, L
    de Carvalho, E
    Slock, DTM
    [J]. NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS, 1998, : 372 - 375
  • [6] Multichannel blind deconvolution of transient impulsive signals
    Lecumberri, P.
    Gomez, M.
    Carlosena, A.
    [J]. 2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1145 - +
  • [7] Semi-Blind Spectral Deconvolution with Adaptive Tikhonov Regularization
    Yan, Luxin
    Liu, Hai
    Zhong, Sheng
    Fang, Houzhang
    [J]. APPLIED SPECTROSCOPY, 2012, 66 (11) : 1334 - 1346
  • [8] AN INVESTIGATION ON SEMI-BLIND DECONVOLUTION BY USING NONLINEAR PROGRAMMING
    徐雷
    阎平凡
    常迵
    [J]. Science Bulletin, 1989, (01) : 74 - 79
  • [9] SEMI-BLIND DECONVOLUTION FOR RESOLUTION ENHANCEMENT IN ULTRASOUND IMAGING
    Morin, Renaud
    Bidon, Stephanie
    Basarab, Adrian
    Kouame, Denis
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 1413 - 1417
  • [10] Multivariate semi-blind deconvolution of fMRI time series
    Cherkaoui, Hamza
    Moreau, Thomas
    Halimi, Abderrahim
    Leroy, Claire
    Ciuciu, Philippe
    [J]. NEUROIMAGE, 2021, 241