Extending Elliptic Curve Chabauty to higher genus curves

被引:0
|
作者
Mourao, Michael [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
RATIONAL-POINTS; JACOBIANS;
D O I
10.1007/s00229-013-0621-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a generalization of the method of "Elliptic Curve Chabauty" to higher genus curves and their Jacobians. This method can sometimes be used in conjunction with covering techniques and a modified version of the Mordell-Weil sieve to provide a complete solution to the problem of determining the set of rational points on an algebraic curve Y. We show how to apply these explicitly by using them to prove that the equation y (2) = (x (3) + x (2) - 1) I broken vertical bar(11)(x) has no rational solutions.
引用
下载
收藏
页码:355 / 377
页数:23
相关论文
共 50 条
  • [1] Extending Elliptic Curve Chabauty to higher genus curves
    Michael Mourao
    Manuscripta Mathematica, 2014, 143 : 355 - 377
  • [2] Chabauty methods using elliptic curves
    Bruin, N
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 562 : 27 - 49
  • [3] Quadratic Chabauty for (bi)elliptic curves and Kim's conjecture
    Bianchi, Francesca
    ALGEBRA & NUMBER THEORY, 2020, 14 (09) : 2369 - 2416
  • [4] Genus 2 curves that admit a degree 5 map to an elliptic curve
    Magaard, Kay
    Shaska, Tanush
    Voelklein, Helmut
    FORUM MATHEMATICUM, 2009, 21 (03) : 547 - 566
  • [5] ALGEBRAIC CURVES WITH SMALL GENUS AND SHARP CHABAUTY-COLEMAN'S BOUND
    Babindamana, Regis Freguin
    Moussolo, Brice Miayoka
    Bossoto
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2024, 63 (04): : 363 - 381
  • [6] Chabauty for symmetric powers of curves
    Siksek, Samir
    ALGEBRA & NUMBER THEORY, 2009, 3 (02) : 209 - 236
  • [7] The genus of the endomorphisms of a supersingular elliptic curve
    Wedhorn, Torsten
    ASTERISQUE, 2007, (312) : 25 - 47
  • [8] Genus two curves covering elliptic curves: a computational approach
    Shaska, T
    COMPUTATIONAL ASPECTS OF ALGEBRAIC CURVES, 2005, 13 : 206 - 231
  • [9] A hyperelliptic curve mapping to specified elliptic curves
    Bo-Hae Im
    Michael Larsen
    Sailun Zhan
    Israel Journal of Mathematics, 2023, 257 : 409 - 431
  • [10] A hyperelliptic curve mapping to specified elliptic curves
    Im, Bo-Hae
    Larsen, Michael
    Zhan, Sailun
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 409 - 431