Integrating Mathematical Modeling into the Roadmap for Personalized Adaptive Radiation Therapy

被引:48
|
作者
Enderling, Heiko [1 ,2 ]
Alfonso, Juan Carlos Lopez [3 ]
Moros, Eduardo [2 ]
Caudell, Jimmy J. [2 ]
Harrison, Louis B. [2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Integrated Math Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Radiat Oncol, Tampa, FL 33612 USA
[3] Braunschweig Integrated Ctr Syst Biol, Helmholtz Ctr Infect Res, D-38106 Braunschweig, Germany
来源
TRENDS IN CANCER | 2019年 / 5卷 / 08期
关键词
TUMOR RADIOSENSITIVITY; RADIOTHERAPY; FRACTIONATION; PROBABILITY; IRRADIATION; MASTECTOMY; TRIALS;
D O I
10.1016/j.trecan.2019.06.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In current radiation oncology practice, treatment protocols are prescribed based on the average outcomes of large clinical trials, with limited personalization and without adaptations of dose or dose fractionation to individual patients based on their individual clinical responses. Predicting tumor responses to radiation and comparing predictions against observed responses offers an opportunity for novel treatment evaluation. These analyses can lead to protocol adaptation aimed at the improvement of patient outcomes with better therapeutic ratios. We foresee the integration of mathematical models into radiation oncology to simulate individual patient tumor growth and predict treatment response as dynamic biomarkers for personalized adaptive radiation therapy (RT).
引用
收藏
页码:467 / 474
页数:8
相关论文
共 50 条
  • [1] A molecular assay of tumor radiosensitivity: a roadmap towards biology-based personalized radiation therapy
    Torres-Roca, Javier F.
    PERSONALIZED MEDICINE, 2012, 9 (05) : 547 - 557
  • [2] Mathematical Model-Driven Deep Learning Enables Personalized Adaptive Therapy
    Gallagher, Kit
    Strobl, Maximilian A. R.
    Park, Derek S.
    Spoendlin, Fabian C.
    Gatenby, Robert A.
    Maini, Philip K.
    Anderson, Alexander R. A.
    CANCER RESEARCH, 2024, 84 (11) : 1929 - 1941
  • [3] Towards personalized radiation therapy: Translation of a mathematical model of the radiosensitivity network to the prediction of clinical radiation response
    Eschrich, S.
    Zhang, H.
    Zhao, H.
    Lee, J.
    Bloom, G.
    Boulware, D.
    Rocha-Lirna, C.
    Calvin, D. P.
    Yeatman, T. J.
    Torres-Roca, J. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 69 (03): : S595 - S595
  • [4] Complex Adaptive Systems Modeling: A multidisciplinary Roadmap
    Niazi, Muaz A.
    COMPLEX ADAPTIVE SYSTEMS MODELING, 2013, 1
  • [5] Personalized medicine for radiation therapy
    Caudell, Jimmy J.
    Eschrich, Steven A.
    Torres-Roca, Javier F.
    PERSONALIZED MEDICINE, 2013, 10 (02) : 107 - 110
  • [6] Personalized radiation therapy for glioblastoma
    Haque, Waqar
    Butler, E. Brian
    Teh, Bin S.
    CHINESE CLINICAL ONCOLOGY, 2024, 13 (01)
  • [7] Personalized Modeling to Improve Pseudo- Computed Tomography Images for Magnetic Resonance Imaging-Guided Adaptive Radiation Therapy
    Ma, Xiangyu
    Chen, Xinyuan
    Wang, Yu
    Qin, Shirui
    Yan, Xuena
    Cao, Ying
    Chen, Yan
    Dai, Jianrong
    Men, Kuo
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 113 (04): : 885 - 892
  • [8] Molecular genetics of meningiomas: Building the roadmap towards personalized therapy
    Peyre, M.
    Kalamarides, M.
    NEUROCHIRURGIE, 2018, 64 (01) : 22 - 28
  • [9] Personalized mathematical modeling of cerebral arterial aneurysms
    Khe, A. K.
    Chupakhin, A. P.
    Cherevko, A. A.
    Parshin, D. V.
    Krivoshapkin, A. L.
    Orlov, K. Yu.
    2015 INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND COMPUTATIONAL TECHNOLOGIES (SIBIRCON), 2015, : 230 - 232
  • [10] MATHEMATICAL-MODELING OF OBJECTIVES IN RADIATION-THERAPY TREATMENT PLANNING
    RAPHAEL, C
    PHYSICS IN MEDICINE AND BIOLOGY, 1992, 37 (06): : 1293 - 1311