Phase-field crystal modeling and classical density functional theory of freezing

被引:506
|
作者
Elder, K. R. [1 ]
Provatas, Nikolas
Berry, Joel
Stefanovic, Peter
Grant, Martin
机构
[1] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
[3] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4L7, Canada
[4] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
关键词
D O I
10.1103/PhysRevB.75.064107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper the relationship between the classical density functional theory of freezing and phase-field modeling is examined. More specifically a connection is made between the correlation functions that enter density functional theory and the free energy functionals used in phase-field crystal modeling and standard models of binary alloys (i.e., regular solution model). To demonstrate the properties of the phase-field crystal formalism a simple model of binary alloy crystallization is derived and shown to simultaneously model solidification, phase segregation, grain growth, elastic and plastic deformations in anisotropic systems with multiple crystal orientations on diffusive time scales.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Classical nucleation theory in the phase-field crystal model
    Jreidini, Paul
    Kocher, Gabriel
    Provatas, Nikolas
    [J]. PHYSICAL REVIEW E, 2018, 97 (04)
  • [2] DENSITY FUNCTIONAL THEORY OF FREEZING - ANALYSIS OF CRYSTAL DENSITY
    LAIRD, BB
    MCCOY, JD
    HAYMET, ADJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (09): : 5449 - 5456
  • [3] Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function
    Pisutha-Arnond, N.
    Chan, V. W. L.
    Iyer, M.
    Gavini, V.
    Thornton, K.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01):
  • [4] Phase-field model of interfaces in single-component systems derived from classical density functional theory
    Pruessner, Gunnar
    Sutton, A. P.
    [J]. PHYSICAL REVIEW B, 2008, 77 (05):
  • [5] Phase-field crystal modeling of crystal growth patterns with competition of undercooling and atomic density
    Muhammad, Suleman
    Li, Yongsheng
    Yan, Zhengwei
    Maqbool, Shahid
    Shi, Shujing
    Muhammad, Iltaf
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (38) : 21858 - 21871
  • [6] Phase-field theory of edges in an anisotropic crystal
    Wheeler, A. A.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2075): : 3363 - 3384
  • [7] Phase-field modeling of macroscopic freezing dynamics in a cylindrical vessel
    Li, Ji-Qin
    Fan, Tai-Hsi
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 156
  • [8] Crystal nucleation and growth in binary phase-field theory
    Gránásy, L
    Börzsönyi, T
    Pusztai, T
    [J]. JOURNAL OF CRYSTAL GROWTH, 2002, 237 : 1813 - 1817
  • [9] Phase-field crystal modeling of heteroepitaxy and exotic modes of crystal nucleation
    Podmaniczky, Frigyes
    Toth, Gyula I.
    Tegze, Gyorgy
    Pusztai, Tamas
    Granasy, Laszlo
    [J]. JOURNAL OF CRYSTAL GROWTH, 2017, 457 : 24 - 31
  • [10] Crystal-melt interface mobility in bcc Fe: Linking molecular dynamics to phase-field and phase-field crystal modeling
    Guerdane, M.
    Berghoff, M.
    [J]. PHYSICAL REVIEW B, 2018, 97 (14)