Semiparametric maximum likelihood for missing covariates in parametric regression

被引:5
|
作者
Zhang, Zhiwei
Rockette, Howard E.
机构
[1] US FDA, Div Biostat, Rockville, MD 20850 USA
[2] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
关键词
asymptotic normality; efficiency; infinite-dimensional M-estimation; missing at random; missing covariates; parametric regression; profile likelihood; semiparametric likelihood;
D O I
10.1007/s10463-006-0047-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider parameter estimation in parametric regression models with covariates missing at random. This problem admits a semiparametric maximum likelihood approach which requires no parametric specification of the selection mechanism or the covariate distribution. The semiparametric maximum likelihood estimator (MLE) has been found to be consistent. We show here, for some specific models, that the semiparametric MLE converges weakly to a zero-mean Gaussian process in a suitable space. The regression parameter estimate, in particular, achieves the semiparametric information bound, which can be consistently estimated by perturbing the profile log-likelihood. Furthermore, the profile likelihood ratio statistic is asymptotically chi-squared. The techniques used here extend to other models.
引用
收藏
页码:687 / 706
页数:20
相关论文
共 50 条