Minimax invariant estimation of a continuous distribution function under entropy loss

被引:5
|
作者
Mohammadi, L [1 ]
van Zwet, WR [1 ]
机构
[1] Leiden Univ, Math Inst, NL-2300 RA Leiden, Netherlands
关键词
Entropy; Distribution Function; Loss Function; Decision Problem; Continuous Distribution;
D O I
10.1007/s001840100152
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the invariant decision problem of estimating a continuous distribution function F with two entropy loss functions, it is proved that the best invariant estimators do exist and are the same as the best invariant estimator of a continuous distribution function under the squared error loss function L(F, d) = integral \F(t) - d(t)\(2) dF(t). They are minimax for any sample size n greater than or equal to 1.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 50 条