The Partial Support of the Left Ventricular Assist Device Shifts the Systemic Cardiac Output Curve Upward in Proportion to the Effective Left Ventricular Ejection Fraction in Pressure-Volume Loop

被引:4
|
作者
Kakino, Takamori [1 ]
Saku, Keita [2 ,3 ]
Nishikawa, Takuya [2 ]
Sunagawa, Kenji [4 ]
机构
[1] St Marys Hosp, Dept Cardiol, Kurume, Fukuoka, Japan
[2] Natl Cerebral & Cardiovasc Ctr, Dept Cardiovasc Dynam, Res Inst, Osaka, Japan
[3] Kyushu Univ, Grad Sch Med Sci, Dept Cardiovasc Med, Fukuoka, Japan
[4] Circulatory Syst Res Fdn, Fukuoka, Japan
来源
基金
日本学术振兴会;
关键词
left ventricular assist device (LVAD); hemodymamics; circulatory equilibrium; prediction; pressure volume loop; impella; HEART; PREDICTION; RECOVERY; SOCIETY; BRIDGE; IMPACT;
D O I
10.3389/fcvm.2020.00163
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Left ventricular assist device (LVAD) has been saving many lives in patients with severe left ventricular (LV) failure. Recently, a minimally invasive transvascular LVAD such as Impella enables us to support unstable hemodynamics in severely ill patients. Although LVAD support increases total LV cardiac output (COTLV) at the expense of decreases in the native LV cardiac output (CONLV), the underlying mechanism determining CO(TLV)remains unestablished. This study aims to clarify the mechanism and develop a framework to predict CO(TLV)under known LVAD flow (COLVAD). We previously developed a generalized framework of circulatory equilibrium that consists of the integrated CO curve and the VR surface as common functions of right atrial pressure (P-RA) and left atrial pressure (P-LA). The intersection between the integrated CO curve and the VR surface defines circulatory equilibrium. Incorporating LVAD into this framework indicated that LVAD increases afterload, which in turn decreases CONLV. The total LV cardiac output (COTLV) under LVAD support becopresemes COTLV= CONLV+EFe center dot COLVAD, where EF(e)is effective ejection fraction, i.e., E-es/(E-es+E-a). E(es)and E(a)rent LV end-systolic elastance (E-es) and effective arterial elastance (E-a), respectively. In other words, LVAD shifts the total LV cardiac output curve upward by EFe center dot COLVAD. In contrast, LVAD does not change the VR surface or the right ventricular CO curve. In six anesthetized dogs, we created LV failure by the coronary ligation of the left anterior descending artery and inserted LVAD by withdrawing blood from LV and pumping out to the femoral artery. We determined the parameters of the CO curve with a volume-change technique. We then changed the CO(LVAD)stepwise from 0 to 70-100 ml/kg/min and predicted hemodynamics by using the proposed circulatory equilibrium. Predicted COTLV, P-RA, and P(LA)for each step correlated well with those measured (SEE; 2.8 ml/kg/min 0.17 mmHg, and 0.65 mmHg, respectively, r(2); 0.993, 0.993, and 0.965, respectively). The proposed framework quantitatively predicted the upward-shift of the total CO curve resulting from the synergistic effect of LV systolic function and LVAD support. The proposed framework can contribute to the safe management of patients with LVAD.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Left ventricular pressure-volume loop analysis during continuous cardiac assist in acute animal trials
    Moscato, Francesco
    Vollkron, Michael
    Bergmeister, Helga
    Wieselthaler, Georg
    Leonard, Edward
    Schima, Heinrich
    ARTIFICIAL ORGANS, 2007, 31 (05) : 369 - 376
  • [2] Left ventricular pressure and volume unloading during pulsatile versus nonpulsatile left ventricular assist device support
    Klotz, S
    Deng, MC
    Stypmann, J
    Roetker, J
    Wilhelm, MJ
    Hammel, D
    Scheld, HH
    Schmid, C
    ANNALS OF THORACIC SURGERY, 2004, 77 (01): : 143 - 149
  • [3] Changes in Left Ventricular Ejection Fraction Following Implantation of Left Ventricular Assist Device as Destination Therapy
    Dunlay, S. M.
    Park, S. J.
    Chandrasekaran, K.
    Choi, J-O
    Pereira, N. L.
    Joyce, L. D.
    Daly, R. C.
    Stulak, J. M.
    Kushwaha, S. S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2013, 32 (04): : S116 - S116
  • [4] Right Ventricular Pressure-Volume Analysis During a Left Ventricular Assist Device Speed Optimization Study
    Kanwar, Manreet K.
    Brener, Michael, I
    Tsukashita, Masaki
    Murali, Srinivas
    Burkhoff, Daniel
    CIRCULATION-HEART FAILURE, 2021, 14 (04) : E008014
  • [5] Cardiac Output Estimation: Online Implementation for Left Ventricular Assist Device Support
    Petrou, Anastasios
    Kanakis, Menelaos
    Magkoutas, Konstantinos
    de Vries, Bob
    Meboldt, Mirko
    Daners, Marianne Schmid
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (06) : 1990 - 1998
  • [6] MECHANISM FOR SHIFTS IN DIASTOLIC, LEFT-VENTRICULAR, PRESSURE-VOLUME CURVE - ROLE OF PERICARDIUM
    TYBERG, JV
    MISBACH, GA
    GLANTZ, SA
    MOORES, WY
    PARMLEY, WW
    EUROPEAN JOURNAL OF CARDIOLOGY, 1978, 7 : 163 - 175
  • [7] EJECTION PRESSURE AND DIASTOLIC LEFT-VENTRICULAR PRESSURE-VOLUME RELATION
    JANICKI, JS
    WEBER, KT
    HEFNER, LL
    CIRCULATION, 1976, 54 (04) : 153 - 153
  • [8] EJECTION PRESSURE AND DIASTOLIC LEFT-VENTRICULAR PRESSURE-VOLUME RELATION
    JANICKI, JS
    WEBER, KT
    AMERICAN JOURNAL OF PHYSIOLOGY, 1977, 232 (06): : H545 - H552
  • [9] Pressure-Volume Loops for Reviewing Right Ventricular Physiology and Failure in the Context of Left Ventricular Assist Device Implantation
    Bouchez, Stefaan
    Erb, Joachim
    Foubert, Luc
    Mauermann, Eckhard
    SEMINARS IN CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2023, 27 (04) : 283 - 291
  • [10] Right ventricle pressure-volume loops for monitoring right ventricular function in left ventricular assist device patient
    Carlson, Samuel F.
    Smith, Nathan J.
    Brown, Colton
    Joyce, Lyle D.
    Joyce, David L.
    ARTIFICIAL ORGANS, 2022, 46 (03) : 509 - 512