Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching

被引:0
|
作者
Songsiri, Patoomsiri [1 ]
Phetkaew, Thimaporn [2 ]
Ichise, Ryutaro [3 ]
Kijsirikul, Boonserm [1 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Bangkok, Thailand
[2] Walailak Univ, Sch Informat, Nakhon Si Thammarat, Thailand
[3] Natl Inst Informat, Tokyo, Japan
关键词
multi-class classification; error correcting output code; minimum weight perfect matching; generalization performance; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including One-Versus-All, the dense random code, and the sparse random code. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to One-Versus-One.
引用
收藏
页码:3519 / 3525
页数:7
相关论文
共 17 条
  • [1] Pipelined correlated minimum weight perfect matching of the surface code
    Paler, Alexandru
    Fowler, Austin G.
    [J]. QUANTUM, 2023, 7
  • [2] Comparing phylogenetic trees using a minimum weight perfect matching
    Bogdanowicz, Damian
    [J]. PROCEEDINGS OF THE 2008 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, 2008, : 451 - 454
  • [3] Intrusion Detection Using Error Correcting Output Code Based Ensemble
    AbdElrahman, Shaza Merghani
    Abraham, Ajith
    [J]. 2014 14TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2014, : 181 - 186
  • [4] Intrusion Detection Using Error Correcting Output Code Based Ensemble
    AbdElrahman, Shaza Merghani
    Abraham, Ajith
    [J]. JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2015, 10 (02): : 72 - 79
  • [5] Enumerating dissimilar minimum cost perfect and error-correcting bipartite matchings for robust data matching
    Blumenthal, David B.
    Bougleux, Sébastien
    Dignös, Anton
    Gamper, Johann
    [J]. Information Sciences, 2022, 596 : 202 - 221
  • [6] Enumerating dissimilar minimum cost perfect and error-correcting bipartite matchings for robust data matching
    Blumenthal, David B.
    Bougleux, Sebastien
    Dignos, Anton
    Gamper, Johann
    [J]. INFORMATION SCIENCES, 2022, 596 : 202 - 221
  • [7] Using diversity measures for generating error-correcting output codes in classifier ensembles
    Kuncheva, LI
    [J]. PATTERN RECOGNITION LETTERS, 2005, 26 (01) : 83 - 90
  • [8] Improvement of performance in multiclass problems by using biclassification based on error-correcting output code
    Kim, Young Bun
    Oh, Jung Hun
    Gao, Jean
    [J]. WCECS 2007: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2007, : 677 - 682
  • [9] Astrea: Accurate Quantum Error-Decoding via Practical Minimum-Weight Perfect-Matching
    Vittal, Suhas
    Das, Poulami
    Qureshi, Moin
    [J]. PROCEEDINGS OF THE 2023 THE 50TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2023, 2023, : 17 - 32
  • [10] Securing templates in a face recognition system using Error-Correcting Output Code and chaos theoryy
    Nazari, Sara
    Moin, Mohammad-Shahram
    Kanan, Hamidreza Rashidy
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2018, 72 : 644 - 659