Conformational flexibility of a microcrystalline globular protein: Order parameters by solid-state NMR spectroscopy

被引:108
|
作者
Lorieau, Justin L. [1 ]
McDermott, Ann E. [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/ja062443u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The majority of protein structures are determined in the crystalline state, yet few methods exist for the characterization of dynamics for crystalline biomolecules. Solid-state NMR can be used to probe detailed dynamic information in crystalline biomolecules. Recent advances in high-resolution solid-state NMR have enabled the site-specific assignment of C-13 and N-15 nuclei in proteins. With the use of multidimensional separated-local-field experiments, we report the backbone and side chain conformational dynamics of ubiquitin, a globular microcrystalline protein. The measurements of molecular conformational order parameters are based on heteronuclear dipolar couplings, and they are correlated to assigned chemical shifts, to obtain a global perspective on the sub-microsecond dynamics in microcrystalline ubiquitin. A total of 38 C alpha, 35 C beta and multiple side chain unique order parameters are collected, and they reveal the high mobility of ubiquitin in the microcrystalline state. In general the side chains show elevated motion in comparison with the backbone sites. The data are compared to solution NMR order parameter measurements on ubiquitin. The SSNMR measurements are sensitive to motions on a broader time scale ( low microsecond and faster) than solution NMR measurements ( low nanosecond and faster), and the SSNMR order parameters are generally lower than the corresponding solution values. Unlike solution NMR relaxation-based order parameters, order parameters for (CH2)-C-13-H-1 spin systems are readily measured from the powder line shape data. These results illustrate the potential for detailed, extensive, and site-specific dynamic studies of biopolymers by solid-state NMR.
引用
收藏
页码:11505 / 11512
页数:8
相关论文
共 50 条
  • [1] Conformational flexibility of a microcrystalline globular protein: Order parameters by solid-state NMR spectroscopy
    Lorieau, Justin L.
    McDermott, Ann E.
    Journal of the American Chemical Society, 2006, 128 (35): : 11506 - 11512
  • [2] Solid-state NMR spectroscopy of microcrystalline proteins
    Kraus, Jodi
    Sarkar, Sucharita
    Quinn, Caitlin M.
    Polenova, Tatyana
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 102, 2021, 102 : 81 - 151
  • [3] Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy
    Schanda, Paul
    Meier, Beat H.
    Ernst, Matthias
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (45) : 15957 - 15967
  • [4] Solid-State NMR Analysis of Interface Flexibility in Pleomorphic Protein
    Michel, Guivert
    Gonzalez, Jeremy J.
    Figueroa-Morales, Carlos A.
    Rodriguez, Naomi C.
    Bayro, Marvin J.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 283A - 283A
  • [5] Protein structure determination by high-resolution solid-state NMR spectroscopy: Application to microcrystalline ubiquitin
    Zech, Stephan G.
    Wand, A. Joshua
    McDermott, Ann E.
    1600, American Chemical Society (127):
  • [6] Protein structure determination by high-resolution solid-state NMR spectroscopy: Application to microcrystalline ubiquitin
    Zech, SG
    Wand, AJ
    McDermott, AE
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (24) : 8618 - 8626
  • [7] Dynamics of a globular protein as studied by neutron scattering and solid-state NMR
    Zanotti, JM
    BellissentFunel, MC
    Parello, J
    PHYSICA B, 1997, 234 : 228 - 230
  • [8] Solid-state NMR spectroscopy
    Reif, Bernd
    Ashbrook, Sharon E.
    Emsley, Lyndon
    Hong, Mei
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [9] Solid-state NMR spectroscopy
    Bernd Reif
    Sharon E. Ashbrook
    Lyndon Emsley
    Mei Hong
    Nature Reviews Methods Primers, 1
  • [10] Solid-state NMR spectroscopy
    Hodgkinson, Paul
    Wimperis, Stephen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (32) : 6875 - 6875