Quantile Regression Modeling for Malaysian Automobile Insurance Premium Data

被引:0
|
作者
Fuzi, Mohd Fadzli Mohd [1 ]
Ismail, Noriszura [1 ]
Jemain, Abd Aziz [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Ukm Bangi 43600, Selangor, Malaysia
来源
关键词
Quantile Regression; Ratemaking; Automobile Insurance; Premium;
D O I
10.1063/1.4931341
中图分类号
O59 [应用物理学];
学科分类号
摘要
Quantile regression is a robust regression to outliers compared to mean regression models. Traditional mean regression models like Generalized Linear Model (GLM) are not able to capture the entire distribution of premium data. In this paper we demonstrate how a quantile regression approach can be used to model net premium data to study the effects of change in the estimates of regression parameters (rating classes) on the magnitude of response variable (pure premium). We then compare the results of quantile regression model with Gamma regression model. The results from (pantile regression show that some rating classes increase as (pantile increases and some decrease with decreasing quantile. Further, we found that the confidence interval of median regression (tau = 0.5) is always smaller than Gamma regression in all risk factors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Use of open data to improve automobile insurance premium rating
    Blesa, Angel
    Iniguez, David
    Moreno, Ruben
    Ruiz, Gonzalo
    [J]. INTERNATIONAL JOURNAL OF MARKET RESEARCH, 2020, 62 (01) : 58 - 78
  • [2] Premium forecasting of an insurance company: Automobile insurance
    Fouladvand, ME
    Darooneh, AH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (03): : 377 - 387
  • [3] Quantile Regression for Clustering and Modeling Data
    Davino, Cristina
    Vistocco, Domenico
    [J]. Advances in Statistical Models for Data Analysis, 2015, : 85 - 95
  • [4] Estimating the Automobile Insurance Premium Based on Credibilities
    Kim, Yeong-Hwa
    Kim, Mi Jung
    Kim, Myung Joon
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (02) : 279 - 292
  • [5] A Bayesian quantile regression model for insurance company costs data
    Sriram, Karthik
    Shi, Peng
    Ghosh, Pulak
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (01) : 177 - 202
  • [6] A Quantile Regression Approach to Equity Premium Prediction
    Meligkotsidou, Loukia
    Panopoulou, Ekaterini
    Vrontos, Ioannis D.
    Vrontos, Spyridon D.
    [J]. JOURNAL OF FORECASTING, 2014, 33 (07) : 558 - 576
  • [7] Modelling Quantile Premium for Dependent LOBs in Property/Casualty Insurance
    Wolny-Dominiak, Alicja
    Wanat, Stanislaw
    Sobiecki, Daniel
    [J]. FINANCE AND SUSTAINABILITY, 2018, : 265 - 272
  • [8] The Effects of Regulated Premium Subsidies on Insurance Costs: An Empirical Analysis of Automobile Insurance
    Weiss, Mary A.
    Tennyson, Sharon
    Regan, Laureen
    [J]. JOURNAL OF RISK AND INSURANCE, 2010, 77 (03) : 597 - 624
  • [9] Parametric Modeling of Quantile Regression Coefficient Functions With Longitudinal Data
    Frumento, Paolo
    Bottai, Matteo
    Fernandez-Val, Ivan
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 783 - 797
  • [10] Parametric modeling of quantile regression coefficient functions with count data
    Frumento, Paolo
    Salvati, Nicola
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2021, 30 (04): : 1237 - 1258