Jarque-Bera test and its competitors for testing normality -: A power comparison

被引:165
|
作者
Thadewald, Thorsten [1 ]
Buning, Herbert [1 ]
机构
[1] Free Univ Berlin, Inst Stat & Econometr, D-14195 Berlin, Germany
关键词
goodness-of-fit tests; tests of Kolmogorov-Smirnov and Cramer-von Mises type; Shapiro-Wilk test; Kuiper test; skewness; kurtosis; contaminated normal distribution; Monte Carlo simulation; critical values; power comparison;
D O I
10.1080/02664760600994539
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For testing normality we investigate the power of several tests, first of all, the well-known test of Jarque & Bera ( 1980) and furthermore the tests of Kuiper ( 1960) and Shapiro & Wilk ( 1965) as well as tests of Kolmogorov - Smirnov and Cramer-von Mises type. The tests on normality are based, first, on independent random variables ( model I) and, second, on the residuals in the classical linear regression ( model II). We investigate the exact critical values of the Jarque - Bera test and the Kolmogorov - Smirnov and Cramer- von Mises tests, in the latter case for the original and standardized observations where the unknown parameters mu and sigma have to be estimated. The power comparison is carried out via Monte Carlo simulation assuming the model of contaminated normal distributions with varying parameters m and s and different proportions of contamination. It turns out that for the Jarque - Bera test the approximation of critical values by the chi-square distribution does not work very well. The test is superior in power to its competitors for symmetric distributions with medium up to long tails and for slightly skewed distributions with long tails. The power of the Jarque - Bera test is poor for distributions with short tails, especially if the shape is bimodal - sometimes the test is even biased. In this case a modification of the Cramer- von Mises test or the Shapiro - Wilk test may be recommended.
引用
收藏
页码:87 / 105
页数:19
相关论文
共 31 条
  • [1] Pseudomedian in robustification of Jarque-Bera test of normality
    Strelec, Lubos
    Grochova, Ladislava Issever
    [J]. MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 738 - 743
  • [2] A robust modification of the Jarque-Bera test of normality
    Gel, Yulia R.
    Gastwirth, Joseph L.
    [J]. ECONOMICS LETTERS, 2008, 99 (01) : 30 - 32
  • [3] A robustified Jarque-Bera test for multivariate normality
    Kim, Namhyun
    [J]. ECONOMICS LETTERS, 2016, 140 : 48 - 52
  • [4] A note on the Jarque-Bera normality test for GARCH innovations
    Sangyeol Lee
    Siyun Park
    Taewook Lee
    [J]. Journal of the Korean Statistical Society, 2010, 39 : 93 - 102
  • [5] A note on the Jarque-Bera normality test for GARCH innovations
    Lee, Sangyeol
    Park, Siyun
    Lee, Taewook
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (01) : 93 - 102
  • [6] Clustering and Jarque-Bera Normality Test to Face Recognition
    Abdellatif, Dahmouni
    El Moutaouakil, Karim
    Satori, Khalid
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 : 246 - 255
  • [7] A note on Jarque-Bera normality test for ARMA-GARCH innovations
    Taewook Lee
    [J]. Journal of the Korean Statistical Society, 2012, 41 : 37 - 48
  • [8] Modifications to the Jarque-Bera Test
    Glinskiy, Vladimir
    Ismayilova, Yulia
    Khrushchev, Sergey
    Logachov, Artem
    Logachova, Olga
    Serga, Lyudmila
    Yambartsev, Anatoly
    Zaykov, Kirill
    [J]. MATHEMATICS, 2024, 12 (16)
  • [9] A note on Jarque-Bera normality test for ARMA-GARCH innovations
    Lee, Taewook
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (01) : 37 - 48
  • [10] On the validity of the Jarque-Bera normality test in conditionally heteroskedastic dynamic regression models
    Fiorentini, G
    Sentana, E
    Calzolari, G
    [J]. ECONOMICS LETTERS, 2004, 83 (03) : 307 - 312